Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

pf-dre-database-client

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

pf-dre-database-client

Main data API used by DRE and MMS Tools & Subsystems

  • 0.4.14
  • PyPI
  • Socket score

Maintainers
1

Meter Management System Client

The python implementation of the pf-dre-database repo provides a client for all Data interactions required with the Meter Management System:

  • Relational tables (Read Only)
  • Timescale DB (Read/Write - No insertion or deletion)
    • JSON Schema
    • Narrow Data Format Schema

This python implementation is to be built and deployed to PyPI for use across all python subsystems of the Demand Response Engine.

Real-Time Input Data Format

When issuing calls to the MMS which require a time series based DataFrame to be passed the format of the schema should be followed with the following general rules.

  • Timestamps are to be generated in string format following the ISO 8601 standard and to follow simple conventions should be kept in UTC format.
  • Any columns within the data structure which are a JSON datatype are to be created in serialized string format, not as a pure python dictionary.
import json
# Correct Format
correct_jsonb_value = json.dumps({'A': 'Dictionary', 'B': 'to', 'C': 'Send'})
# Incorrect Format
incorrect_jsonb_value = {'A': 'Dictionary', 'B': 'to', 'C': 'Send'}
Example Data Frame for a narrow column format schema
measurement_datedevice_iddevice_metric_type_idvalue
2020-01-01T12:00:00.0001P1.0
2020-01-01T12:01:00.0001P2.0
2020-01-01T12:00:00.0001Q-1.0
2020-01-01T12:01:00.0001Q-2.0
2020-01-01T12:00:00.0002P10.0
2020-01-01T12:01:00.0002P20.0
2020-01-01T12:00:00.0002Q-10.0
2020-01-01T12:01:00.0002Q-20.0
object (str)int64object (str)float64
Example Data Frame for a JSON schema
measurement_datedevice_idmetrics
2020-01-01T12:00:00.0001{"P": 1.0, "Q": -1.0, "S": 'NaN'}
2020-01-01T12:00:00.0002{"P": 2.0, "Q": -2.0}
2020-01-01T12:01:00.0001{"P": 10.0, "Q": -10.0}
2020-01-01T12:01:00.0002{"P": 20.0, "Q": -20.0}
object (str)int64object (str)

Real-Time Standardized Output DataFrame Format

When issuing calls to the MMS which return a time series DataFrame, the client, regardless of schema will be constructed to return in a standardized format. This makes the reading and manipulation of data consistent.

device_iddevice_metric_type_idmeasurement_datevalue
1P2020-01-01T12:00:00.0001001.0
2020-01-01T12:01:00.0001012.0
Q2020-01-01T12:00:00.00012.132
2020-01-01T12:01:00.000-2.132
2P2020-01-01T12:00:00.0002001.0
2020-01-01T12:01:00.0002012.0
Q2020-01-01T12:00:00.00022.132
2020-01-01T12:01:00.000-3.132
int64object (str)object (str)float64

The client also has the option of returing the data frame results in a raw, un-standardised format. In this case, the dataframe will be returned in the format of the underlying database schema without any alteration.

Forecast Input Data Format

When issuing calls to the MMS which require a forecast time series based DataFrame to be passed, the format of the schema should be followed with the following general rules.

  • Timestamps are to be generated in string format following the ISO 8601 standard and to follow simple conventions should be kept in UTC format.
  • Any columns within the data structure which are a JSON datatype are to be created in serialized string format, not as a pure python dictionary.
Example Data Frame for a narrow column format schema
received_datedevice_iddevice_metric_type_idmeasurement_datevalue
2020-01-01T12:00:00.0001P2020-01-01T12:00:00.0001.0
2020-01-01T12:00:00.0001P2020-01-01T12:01:00.0002.0
2020-01-01T12:00:00.0001P2020-01-01T12:02:00.0003.0
2020-01-01T12:00:00.0001Q2020-01-01T12:00:00.000-1.0
2020-01-01T12:00:00.0001Q2020-01-01T12:01:00.000-2.0
2020-01-01T12:00:00.0001Q2020-01-01T12:02:00.000-3.0
2020-01-01T12:01:00.0001P2020-01-01T12:01:00.0002.0
2020-01-01T12:01:00.0001P2020-01-01T12:02:00.0003.0
2020-01-01T12:01:00.0001P2020-01-01T12:03:00.0004.0
2020-01-01T12:01:00.0001Q2020-01-01T12:01:00.000-2.0
2020-01-01T12:01:00.0001Q2020-01-01T12:02:00.000-3.0
2020-01-01T12:01:00.0001Q2020-01-01T12:03:00.000-4.0
object (str)int64object (str)objectfloat64
Example Forecast Data Frame for a JSON schema
received_datedevice_idmetrics
2020-01-01T12:00:00.0001{ "P": {"2020-01-01T12:00:00+00:00": 1.0, "2020-01-01T12:01:00+00:00": 2.0, "2020-01-01T12:02:00+00:00": 3.0}, "Q": {"2020-01-01T12:00:00+00:00": -1.0, "2020-01-01T12:01:00+00:00": -2.0, "2020-01-01T12:02:00+00:00": -3.0, "2020-01-01T12:03:00+00:00": 'NaN'}}
2020-01-01T12:01:00.0001{ "P": {"2020-01-01T12:01:00+00:00": 2.0, "2020-01-01T12:02:00+00:00": 3.0, "2020-01-01T12:03:00+00:00": 4.0}, "Q": {"2020-01-01T12:01:00+00:00": -2.0, "2020-01-01T12:02:00+00:00": -3.0, "2020-01-01T12:03:00+00:00": -4.0}}
object (str)int64object

Forecast Standardized Output DataFrame Format

When issuing calls to the MMS which return a time series DataFrame, the client, regardless of schema will be constructed to return in a standardized format. This makes the reading and manipulation of data consistent.

received_datedevice_iddevice_metric_type_idmeasurement_datevalue
2020-01-01T12:00:00.0001P2020-01-01T12:00:00.0001.0
2020-01-01T12:01:00.0002.0
2020-01-01T12:02:00.0003.0
Q2020-01-01T12:00:00.000-1.0
2020-01-01T12:01:00.000-2.0
2020-01-01T12:02:00.000-3.0
2020-01-01T12:01:00.0001P2020-01-01T12:01:00.0002.0
2020-01-01T12:02:00.0003.0
2020-01-01T12:03:00.0004.0
Q2020-01-01T12:01:00.000-2.0
2020-01-01T12:02:00.000-3.0
2020-01-01T12:03:00.000-4.0
object (str)int64object (str)object (str)float64

The client also has the option of returning the data frame results in a raw, un-standardised format by initializing the client with the argument: standardized=False In this case, the data frame will be returned in the format of the underlying database schema without any alteration.

Accessing Standardized DataFrame Contents

Real-time DataFrames python # Accessing Device Metric Timeseries time_series = df.loc[(1, 'P'), 'value'] time_series_times = df.loc[(1, 'P'), 'value'].index.values.tolist()) time_series_values = df.loc[(1, 'P'), 'value'].values.tolist()) # Accessing Most Recent Device Metric # (Note the standardized format is sorted in ascending order) latest_P = df.loc[(1, 'P'), 'value'].iloc[0] Forecast DataFrames

Prerequisites

  • Python 3.7.0+

Setup

The following environment variables are required in order to make use of the client.

  • PGDATABASE: The name of the MMS Database instance.
  • PGUSER: MMS Database user.
  • PGPASSWORD: MMS Database password.
  • PGHOST: MMS Database host.
  • PGPORT: MMS Database port (read/write permissions required).

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc