Meter Management System Client
The python implementation of the pf-dre-database repo provides a client
for all Data interactions required with the Meter Management System:
- Relational tables (Read Only)
- Timescale DB (Read/Write - No insertion or deletion)
- JSON Schema
- Narrow Data Format Schema
This python implementation is to be built and deployed to PyPI for use
across all python subsystems of the Demand Response Engine.
Real-Time Input Data Format
When issuing calls to the MMS which require a time series based DataFrame to be
passed the format of the schema should be followed with the following general
rules.
- Timestamps are to be generated in string format following the ISO 8601
standard and to follow simple conventions should be kept in UTC format.
- Any columns within the data structure which are a JSON datatype are to be
created in serialized string format, not as a pure python dictionary.
import json
correct_jsonb_value = json.dumps({'A': 'Dictionary', 'B': 'to', 'C': 'Send'})
incorrect_jsonb_value = {'A': 'Dictionary', 'B': 'to', 'C': 'Send'}
Example Data Frame for a narrow column format schema
measurement_date | device_id | device_metric_type_id | value |
---|
2020-01-01T12:00:00.000 | 1 | P | 1.0 |
2020-01-01T12:01:00.000 | 1 | P | 2.0 |
2020-01-01T12:00:00.000 | 1 | Q | -1.0 |
2020-01-01T12:01:00.000 | 1 | Q | -2.0 |
2020-01-01T12:00:00.000 | 2 | P | 10.0 |
2020-01-01T12:01:00.000 | 2 | P | 20.0 |
2020-01-01T12:00:00.000 | 2 | Q | -10.0 |
2020-01-01T12:01:00.000 | 2 | Q | -20.0 |
object (str) | int64 | object (str) | float64 |
Example Data Frame for a JSON schema
measurement_date | device_id | metrics |
---|
2020-01-01T12:00:00.000 | 1 | {"P": 1.0, "Q": -1.0, "S": 'NaN'} |
2020-01-01T12:00:00.000 | 2 | {"P": 2.0, "Q": -2.0} |
2020-01-01T12:01:00.000 | 1 | {"P": 10.0, "Q": -10.0} |
2020-01-01T12:01:00.000 | 2 | {"P": 20.0, "Q": -20.0} |
object (str) | int64 | object (str) |
Real-Time Standardized Output DataFrame Format
When issuing calls to the MMS which return a time series DataFrame, the client,
regardless of schema will be constructed to return in a standardized format.
This makes the reading and manipulation of data consistent.
device_id | device_metric_type_id | measurement_date | value |
---|
1 | P | 2020-01-01T12:00:00.000 | 1001.0 |
| | 2020-01-01T12:01:00.000 | 1012.0 |
| Q | 2020-01-01T12:00:00.000 | 12.132 |
| | 2020-01-01T12:01:00.000 | -2.132 |
2 | P | 2020-01-01T12:00:00.000 | 2001.0 |
| | 2020-01-01T12:01:00.000 | 2012.0 |
| Q | 2020-01-01T12:00:00.000 | 22.132 |
| | 2020-01-01T12:01:00.000 | -3.132 |
int64 | object (str) | object (str) | float64 |
The client also has the option of returing the data frame results in a raw,
un-standardised format. In this case, the dataframe will be returned in the
format of the underlying database schema without any alteration.
Forecast Input Data Format
When issuing calls to the MMS which require a forecast time series based
DataFrame to be passed, the format of the schema should be followed with the
following general rules.
- Timestamps are to be generated in string format following the ISO 8601
standard and to follow simple conventions should be kept in UTC format.
- Any columns within the data structure which are a JSON datatype are to be
created in serialized string format, not as a pure python dictionary.
Example Data Frame for a narrow column format schema
received_date | device_id | device_metric_type_id | measurement_date | value |
---|
2020-01-01T12:00:00.000 | 1 | P | 2020-01-01T12:00:00.000 | 1.0 |
2020-01-01T12:00:00.000 | 1 | P | 2020-01-01T12:01:00.000 | 2.0 |
2020-01-01T12:00:00.000 | 1 | P | 2020-01-01T12:02:00.000 | 3.0 |
2020-01-01T12:00:00.000 | 1 | Q | 2020-01-01T12:00:00.000 | -1.0 |
2020-01-01T12:00:00.000 | 1 | Q | 2020-01-01T12:01:00.000 | -2.0 |
2020-01-01T12:00:00.000 | 1 | Q | 2020-01-01T12:02:00.000 | -3.0 |
2020-01-01T12:01:00.000 | 1 | P | 2020-01-01T12:01:00.000 | 2.0 |
2020-01-01T12:01:00.000 | 1 | P | 2020-01-01T12:02:00.000 | 3.0 |
2020-01-01T12:01:00.000 | 1 | P | 2020-01-01T12:03:00.000 | 4.0 |
2020-01-01T12:01:00.000 | 1 | Q | 2020-01-01T12:01:00.000 | -2.0 |
2020-01-01T12:01:00.000 | 1 | Q | 2020-01-01T12:02:00.000 | -3.0 |
2020-01-01T12:01:00.000 | 1 | Q | 2020-01-01T12:03:00.000 | -4.0 |
object (str) | int64 | object (str) | object | float64 |
Example Forecast Data Frame for a JSON schema
received_date | device_id | metrics |
---|
2020-01-01T12:00:00.000 | 1 | { "P": {"2020-01-01T12:00:00+00:00": 1.0, "2020-01-01T12:01:00+00:00": 2.0, "2020-01-01T12:02:00+00:00": 3.0}, "Q": {"2020-01-01T12:00:00+00:00": -1.0, "2020-01-01T12:01:00+00:00": -2.0, "2020-01-01T12:02:00+00:00": -3.0, "2020-01-01T12:03:00+00:00": 'NaN'}} |
2020-01-01T12:01:00.000 | 1 | { "P": {"2020-01-01T12:01:00+00:00": 2.0, "2020-01-01T12:02:00+00:00": 3.0, "2020-01-01T12:03:00+00:00": 4.0}, "Q": {"2020-01-01T12:01:00+00:00": -2.0, "2020-01-01T12:02:00+00:00": -3.0, "2020-01-01T12:03:00+00:00": -4.0}} |
object (str) | int64 | object |
Forecast Standardized Output DataFrame Format
When issuing calls to the MMS which return a time series DataFrame, the client,
regardless of schema will be constructed to return in a standardized format.
This makes the reading and manipulation of data consistent.
received_date | device_id | device_metric_type_id | measurement_date | value |
---|
2020-01-01T12:00:00.000 | 1 | P | 2020-01-01T12:00:00.000 | 1.0 |
| | | 2020-01-01T12:01:00.000 | 2.0 |
| | | 2020-01-01T12:02:00.000 | 3.0 |
| | Q | 2020-01-01T12:00:00.000 | -1.0 |
| | | 2020-01-01T12:01:00.000 | -2.0 |
| | | 2020-01-01T12:02:00.000 | -3.0 |
2020-01-01T12:01:00.000 | 1 | P | 2020-01-01T12:01:00.000 | 2.0 |
| | | 2020-01-01T12:02:00.000 | 3.0 |
| | | 2020-01-01T12:03:00.000 | 4.0 |
| | Q | 2020-01-01T12:01:00.000 | -2.0 |
| | | 2020-01-01T12:02:00.000 | -3.0 |
| | | 2020-01-01T12:03:00.000 | -4.0 |
object (str) | int64 | object (str) | object (str) | float64 |
The client also has the option of returning the data frame results in a raw,
un-standardised format by initializing the client with the argument:
standardized=False
In this case, the data frame will be returned in the
format of the underlying database schema without any alteration.
Accessing Standardized DataFrame Contents
Real-time DataFrames
python # Accessing Device Metric Timeseries time_series = df.loc[(1, 'P'), 'value'] time_series_times = df.loc[(1, 'P'), 'value'].index.values.tolist()) time_series_values = df.loc[(1, 'P'), 'value'].values.tolist()) # Accessing Most Recent Device Metric # (Note the standardized format is sorted in ascending order) latest_P = df.loc[(1, 'P'), 'value'].iloc[0]
Forecast DataFrames
Prerequisites
Setup
The following environment variables are required in order to make use
of the client.
PGDATABASE
: The name of the MMS Database instance.PGUSER
: MMS Database user.PGPASSWORD
: MMS Database password.PGHOST
: MMS Database host.PGPORT
: MMS Database port (read/write permissions required).