Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

pharmpy-core

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

pharmpy-core

Pharmacometric modeling

  • 1.4.0
  • PyPI
  • Socket score

Maintainers
1

|badge1| |badge2| |badge3| |badge4| |badge5| |badge6|

.. |badge1| image:: https://img.shields.io/pypi/v/pharmpy-core.svg :target: https://pypi.org/project/pharmpy-core

.. |badge2| image:: https://img.shields.io/pypi/l/pharmpy-core.svg :target: https://github.com/pharmpy/pharmpy/blob/main/LICENSE.LESSER

.. |badge3| image:: https://github.com/pharmpy/pharmpy/actions/workflows/main.yml/badge.svg :target: https://github.com/pharmpy/pharmpy/actions

.. |badge4| image:: https://img.shields.io/pypi/pyversions/pharmpy-core :target: https://www.python.org/downloads/

.. |badge5| image:: https://img.shields.io/badge/code%20style-black-000000.svg :target: https://github.com/psf/black

.. |badge6| image:: https://codecov.io/gh/pharmpy/pharmpy/branch/main/graph/badge.svg?token=JZTHXXQPII :target: https://codecov.io/gh/pharmpy/pharmpy

.. _README:

.. |logo| image:: https://github.com/pharmpy/pharmpy/raw/main/docs/Pharmpy_logo.svg :width: 250

Pharmpy is an open-source software package for pharmacometric modeling. It has functionality ranging from reading and manipulating model files and datasets to full tools where subsequent results are collected and presented.

Features include:

  • A model abstraction which splits a model into core components which Pharmpy understands and can manipulate: parameters, random variables, statements (including ODE system), dataset, and execution steps
  • An abstraction for modelfit results which splits a parsed results into core components: e.g. OFV, parameter estimates, relative standard errors (RSEs), residuals, predictions
  • Functions for manipulation of models and datasets in the modeling-module: e.g. change structural model, add time-after-dose column, deidentify dataset
  • Tools to aid model development in the tools-module: execution of models within Python/R scripts, automatic development of models (e.g. AMD, IIVSearch, RUVSearch), comparison of estimation methods
  • Support for multiple estimation tools: parse NONMEM models, execute NONMEM, nlmixr2, and rxODE2 models, run all Pharmpy tools with NONMEM and some with nlmixr2

For more comprehensive information and documentation, see: https://pharmpy.github.io

Pharmpy can be used as a regular Python package, in R via the pharmr <https://github.com/pharmpy/pharmr>_ package, or via its built in command line interface.

Getting started

The sections below are intended as first steps, please check our website <https://pharmpy.github.io>_ website for more comprehensive documentation, such as user guides and API references.

Installation

For installation in R, see pharmr <https://github.com/pharmpy/pharmr>_.

Install the latest stable version from PyPI:

pip install pharmpy-core    # or 'pip3 install' if that is your default python3 pip

Python Example

.. code-block:: none

from pharmpy.modeling import read_model from pharmpy.tools import load_example_modelfit_results model = load_example_model("pheno") model.parameters value lower upper fix POP_CL 0.004693 0.00 ∞ False POP_VC 1.009160 0.00 ∞ False COVAPGR 0.100000 -0.99 ∞ False IIV_CL 0.030963 0.00 ∞ False IIV_VC 0.031128 0.00 ∞ False SIGMA 0.013086 0.00 ∞ False res = load_example_modelfit_results("pheno") res.parameter_estimates POP_CL 0.004696 POP_VC 0.984258 COVAPGR 0.158920 IIV_CL 0.029351 IIV_VC 0.027906 SIGMA 0.013241 Name: estimates, dtype: float64

CLI Example

.. code-block:: none

# Get help
pharmpy -h

# Remove first ID from dataset and save new model using new dataset
pharmpy data filter run1.mod 'ID!=1'

# Run tool for selecting IIV structure
pharmpy run iivsearch run1.mod

Contact

This is the team behind Pharmpy <https://pharmpy.github.io/latest/contributors.html>_

Please ask a question in an issue or contact one of the maintainers if you have any questions.

Contributing

If you interested in contributing to Pharmpy, you can find more information under Contribute <https://pharmpy.github.io/latest/contribute.html#contribute>_.

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc