Phitter analyzes datasets and determines the best analytical probability distributions that represent them. Phitter studies over 80 probability distributions, both continuous and discrete, 3 goodness-of-fit tests, and interactive visualizations. For each selected probability distribution, a standard modeling guide is provided along with spreadsheets that detail the methodology for using the chosen distribution in data science, operations research, and artificial intelligence.
In addition, Phitter offers the capability to perform process simulations, allowing users to graph and observe minimum times for specific observations. It also supports queue simulations with flexibility to configure various parameters, such as the number of servers, maximum population size, system capacity, and different queue disciplines, including First-In-First-Out (FIFO), Last-In-First-Out (LIFO), and priority-based service (PBS).
This repository contains the implementation of the python library and the kernel of Phitter Web
Documentation Fit Module
General Fit
import phitter
data: list[int | float] = [...]
phi = phitter.PHITTER(data)
phi.fit()
Full continuous implementation
import phitter
data: list[int | float] = [...]
phi = phitter.PHITTER(
data=data,
fit_type="continuous",
num_bins=15,
confidence_level=0.95,
minimum_sse=1e-2,
distributions_to_fit=["beta", "normal", "fatigue_life", "triangular"],
)
phi.fit(n_workers=6)
Full discrete implementation
import phitter
data: list[int | float] = [...]
phi = phitter.PHITTER(
data=data,
fit_type="discrete",
confidence_level=0.95,
minimum_sse=1e-2,
distributions_to_fit=["binomial", "geometric"],
)
phi.fit(n_workers=2)
Phitter: properties and methods
import phitter
data: list[int | float] = [...]
phi = phitter.PHITTER(data)
phi.fit(n_workers=2)
phi.summarize(k: int) -> pandas.DataFrame
phi.summarize_info(k: int) -> pandas.DataFrame
phi.best_distribution -> dict
phi.sorted_distributions_sse -> dict
phi.not_rejected_distributions -> dict
phi.df_sorted_distributions_sse -> pandas.DataFrame
phi.df_not_rejected_distributions -> pandas.DataFrame
phi.get_parameters(id_distribution: str) -> dict
phi.get_test_chi_square(id_distribution: str) -> dict
phi.get_test_kolmmogorov_smirnov(id_distribution: str) -> dict
phi.get_test_anderson_darling(id_distribution: str) -> dict
phi.get_sse(id_distribution: str) -> float
phi.get_n_test_passed(id_distribution: str) -> int
phi.get_n_test_null(id_distribution: str) -> int
Histogram Plot
import phitter
data: list[int | float] = [...]
phi = phitter.PHITTER(data)
phi.fit()
phi.plot_histogram()
Histogram PDF Dsitributions Plot
import phitter
data: list[int | float] = [...]
phi = phitter.PHITTER(data)
phi.fit()
phi.plot_histogram_distributions()
Histogram PDF Dsitribution Plot
import phitter
data: list[int | float] = [...]
phi = phitter.PHITTER(data)
phi.fit()
phi.plot_distribution("beta")
ECDF Plot
import phitter
data: list[int | float] = [...]
phi = phitter.PHITTER(data)
phi.fit()
phi.plot_ecdf()
ECDF Distribution Plot
import phitter
data: list[int | float] = [...]
phi = phitter.PHITTER(data)
phi.fit()
phi.plot_ecdf_distribution("beta")
QQ Plot
import phitter
data: list[int | float] = [...]
phi = phitter.PHITTER(data)
phi.fit()
phi.qq_plot("beta")
QQ - Regression Plot
import phitter
data: list[int | float] = [...]
phi = phitter.PHITTER(data)
phi.fit()
phi.qq_plot_regression("beta")
Working with distributions: Methods and properties
import phitter
distribution = phitter.continuous.BETA({"alpha": 5, "beta": 3, "A": 200, "B": 1000})
distribution.cdf(752)
distribution.pdf(388)
distribution.ppf(0.623)
distribution.sample(2)
distribution.mean
distribution.variance
distribution.standard_deviation
distribution.skewness
distribution.kurtosis
distribution.median
distribution.mode
Continuous Distributions
2. Resources Continuous Distributions
Discrete Distributions
2. Resources Discrete Distributions
Benchmarks
Fit time continuous distributions
Sample Size / Workers | 1 | 2 | 6 | 10 | 20 |
---|
1K | 8.2981 | 7.1242 | 8.9667 | 9.9287 | 16.2246 |
10K | 20.8711 | 14.2647 | 10.5612 | 11.6004 | 17.8562 |
100K | 152.6296 | 97.2359 | 57.7310 | 51.6182 | 53.2313 |
500K | 914.9291 | 640.8153 | 370.0323 | 267.4597 | 257.7534 |
1M | 1580.8501 | 972.3985 | 573.5429 | 496.5569 | 425.7809 |
Estimation time parameters discrete distributions
Sample Size / Workers | 1 | 2 | 4 |
---|
1K | 0.1688 | 2.6402 | 2.8719 |
10K | 0.4462 | 2.4452 | 3.0471 |
100K | 4.5598 | 6.3246 | 7.5869 |
500K | 19.0172 | 21.8047 | 19.8420 |
1M | 39.8065 | 29.8360 | 30.2334 |
Estimation time parameters continuous distributions
Distribution / Sample Size | 1K | 10K | 100K | 500K | 1M | 10M |
---|
alpha | 0.3345 | 0.4625 | 2.5933 | 18.3856 | 39.6533 | 362.2951 |
arcsine | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
argus | 0.0559 | 0.2050 | 2.2472 | 13.3928 | 41.5198 | 362.2472 |
beta | 0.1880 | 0.1790 | 0.1940 | 0.2110 | 0.1800 | 0.3134 |
beta_prime | 0.1766 | 0.7506 | 7.6039 | 40.4264 | 85.0677 | 812.1323 |
beta_prime_4p | 0.0720 | 0.3630 | 3.9478 | 20.2703 | 40.2709 | 413.5239 |
bradford | 0.0110 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0010 |
burr | 0.0733 | 0.6931 | 5.5425 | 36.7684 | 79.8269 | 668.2016 |
burr_4p | 0.1552 | 0.7981 | 8.4716 | 44.4549 | 87.7292 | 858.0035 |
cauchy | 0.0090 | 0.0160 | 0.1581 | 1.1052 | 2.1090 | 21.5244 |
chi_square | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
chi_square_3p | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
dagum | 0.3381 | 0.8278 | 9.6907 | 45.5855 | 98.6691 | 917.6713 |
dagum_4p | 0.3646 | 1.3307 | 13.3437 | 70.9462 | 140.9371 | 1396.3368 |
erlang | 0.0010 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
erlang_3p | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
error_function | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
exponential | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
exponential_2p | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
f | 0.0592 | 0.2948 | 2.6920 | 18.9458 | 29.9547 | 402.2248 |
fatigue_life | 0.0352 | 0.1101 | 1.7085 | 9.0090 | 20.4702 | 186.9631 |
folded_normal | 0.0020 | 0.0020 | 0.0020 | 0.0022 | 0.0033 | 0.0040 |
frechet | 0.1313 | 0.4359 | 5.7031 | 39.4202 | 43.2469 | 671.3343 |
f_4p | 0.3269 | 0.7517 | 0.6183 | 0.6037 | 0.5809 | 0.2073 |
gamma | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
gamma_3p | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
generalized_extreme_value | 0.0833 | 0.2054 | 2.0337 | 10.3301 | 22.1340 | 243.3120 |
generalized_gamma | 0.0298 | 0.0178 | 0.0227 | 0.0236 | 0.0170 | 0.0241 |
generalized_gamma_4p | 0.0371 | 0.0116 | 0.0732 | 0.0725 | 0.0707 | 0.0730 |
generalized_logistic | 0.1040 | 0.1073 | 0.1037 | 0.0819 | 0.0989 | 0.0836 |
generalized_normal | 0.0154 | 0.0736 | 0.7367 | 2.4831 | 5.9752 | 55.2417 |
generalized_pareto | 0.3189 | 0.8978 | 8.9370 | 51.3813 | 101.6832 | 1015.2933 |
gibrat | 0.0328 | 0.0432 | 0.4287 | 2.7159 | 5.5721 | 54.1702 |
gumbel_left | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0010 | 0.0010 |
gumbel_right | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
half_normal | 0.0010 | 0.0000 | 0.0000 | 0.0010 | 0.0000 | 0.0000 |
hyperbolic_secant | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
inverse_gamma | 0.0308 | 0.0632 | 0.7233 | 5.0127 | 10.7885 | 99.1316 |
inverse_gamma_3p | 0.0787 | 0.1472 | 1.6513 | 11.1161 | 23.4587 | 227.6125 |
inverse_gaussian | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
inverse_gaussian_3p | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
johnson_sb | 0.2966 | 0.7466 | 4.0707 | 40.2028 | 56.2130 | 728.2447 |
johnson_su | 0.0070 | 0.0010 | 0.0010 | 0.0143 | 0.0010 | 0.0010 |
kumaraswamy | 0.0164 | 0.0120 | 0.0130 | 0.0123 | 0.0125 | 0.0150 |
laplace | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
levy | 0.0100 | 0.0314 | 0.2296 | 1.1365 | 2.7211 | 26.4966 |
loggamma | 0.0085 | 0.0050 | 0.0050 | 0.0070 | 0.0062 | 0.0080 |
logistic | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
loglogistic | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
loglogistic_3p | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
lognormal | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0010 | 0.0000 |
maxwell | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0010 |
moyal | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
nakagami | 0.0000 | 0.0030 | 0.0213 | 0.1215 | 0.2649 | 2.2457 |
non_central_chi_square | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
non_central_f | 0.0190 | 0.0182 | 0.0210 | 0.0192 | 0.0190 | 0.0200 |
non_central_t_student | 0.0874 | 0.0822 | 0.0862 | 0.1314 | 0.2516 | 0.1781 |
normal | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
pareto_first_kind | 0.0010 | 0.0030 | 0.0390 | 0.2494 | 0.5226 | 5.5246 |
pareto_second_kind | 0.0643 | 0.1522 | 1.1722 | 10.9871 | 23.6534 | 201.1626 |
pert | 0.0052 | 0.0030 | 0.0030 | 0.0040 | 0.0040 | 0.0092 |
power_function | 0.0075 | 0.0040 | 0.0040 | 0.0030 | 0.0040 | 0.0040 |
rayleigh | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
reciprocal | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
rice | 0.0182 | 0.0030 | 0.0040 | 0.0060 | 0.0030 | 0.0050 |
semicircular | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
trapezoidal | 0.0083 | 0.0072 | 0.0073 | 0.0060 | 0.0070 | 0.0060 |
triangular | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
t_student | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
t_student_3p | 0.3892 | 1.1860 | 11.2759 | 71.1156 | 143.1939 | 1409.8578 |
uniform | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
weibull | 0.0010 | 0.0000 | 0.0000 | 0.0000 | 0.0010 | 0.0010 |
weibull_3p | 0.0061 | 0.0040 | 0.0030 | 0.0040 | 0.0050 | 0.0050 |
Estimation time parameters discrete distributions
Distribution / Sample Size | 1K | 10K | 100K | 500K | 1M | 10M |
---|
bernoulli | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
binomial | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
geometric | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
hypergeometric | 0.0773 | 0.0061 | 0.0030 | 0.0020 | 0.0030 | 0.0051 |
logarithmic | 0.0210 | 0.0035 | 0.0171 | 0.0050 | 0.0030 | 0.0756 |
negative_binomial | 0.0293 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
poisson | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
uniform | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Documentation Simulation Module
Process Simulation
This will help you to understand your processes. To use it, run the following line
from phitter import simulation
simulation = simulation.ProcessSimulation()
Add processes to your simulation instance
There are two ways to add processes to your simulation instance:
- Adding a process without preceding process (new branch)
- Adding a process with preceding process (with previous ids)
Process without preceding process (new branch)
simulation.add_process(
prob_distribution="normal",
parameters={"mu": 5, "sigma": 2},
process_id="first_process",
number_of_products=10,
number_of_servers=3,
new_branch=True,
)
Process with preceding process (with previous ids)
simulation.add_process(
prob_distribution="exponential",
parameters={"lambda": 4},
process_id="second_process",
previous_ids=["first_process"],
)
All together and adding some new process
The order in which you add each process matters. You can add as many processes as you need.
simulation.add_process(
prob_distribution="normal",
parameters={"mu": 5, "sigma": 2},
process_id="first_process",
number_of_products=10,
number_of_servers=3,
new_branch=True,
)
simulation.add_process(
prob_distribution="exponential",
parameters={"lambda": 4},
process_id="second_process",
previous_ids=["first_process"],
)
simulation.add_process(
prob_distribution="gamma",
parameters={"alpha": 15, "beta": 3},
process_id="third_process",
previous_ids=["first_process"],
)
simulation.add_process(
prob_distribution="exponential",
parameters={"lambda": 4.3},
process_id="fourth_process",
new_branch=True,
)
simulation.add_process(
prob_distribution="beta",
parameters={"alpha": 1, "beta": 1, "A": 2, "B": 3},
process_id="fifth_process",
previous_ids=["second_process", "fourth_process"],
)
simulation.add_process(
prob_distribution="normal",
parameters={"mu": 15, "sigma": 2},
process_id="sixth_process",
previous_ids=["third_process", "fifth_process"],
)
Visualize your processes
You can visualize your processes to see if what you're trying to simulate is your actual process.
simulation.process_graph()
Start Simulation
You can simulate and have different simulation time values or you can create a confidence interval for your process
Run Simulation
Simulate several scenarios of your complete process
simulation.run(number_of_simulations=100)
simulation: pandas.Dataframe
Review Simulation Metrics by Stage
If you want to review average time and standard deviation by stage run this line of code
simulation.simulation_metrics() -> pandas.Dataframe
Run confidence interval
If you want to have a confidence interval for the simulation metrics, run the following line of code
simulation.run_confidence_interval(
confidence_level=0.99,
number_of_simulations=100,
replications=10,
) -> pandas.Dataframe
Queue Simulation
If you need to simulate queues run the following code:
from phitter import simulation
simulation = simulation.QueueingSimulation(
a="exponential",
a_paramters={"lambda": 5},
s="exponential",
s_parameters={"lambda": 20},
c=3,
)
In this case we are going to simulate a (arrivals) with exponential distribution and s (service) as exponential distribution with c equals to 3 different servers.
By default Maximum Capacity k is infinity, total population n is infinity and the queue discipline d is FIFO. As we are not selecting d equals to "PBS" we don't have any information to add for pbs_distribution nor pbs_parameters
Run the simulation
If you want to have the simulation results
simulation = simulation.run(simulation_time = 2000)
simulation: pandas.Dataframe
If you want to see some metrics and probabilities from this simulation you should use::
simulation.metrics_summary() -> pandas.Dataframe
number_probability_summary() -> pandas.Dataframe
Run Confidence Interval for metrics and probabilities
If you want to have a confidence interval for your metrics and probabilities you should run the following line
probabilities, metrics = simulation.confidence_interval_metrics(
simulation_time=2000,
confidence_level=0.99,
replications=10,
)
probabilities -> pandas.Dataframe
metrics -> pandas.Dataframe
If you would like to contribute to the Phitter project, please create a pull request with your proposed changes or enhancements. All contributions are welcome!