Security News
Fluent Assertions Faces Backlash After Abandoning Open Source Licensing
Fluent Assertions is facing backlash after dropping the Apache license for a commercial model, leaving users blindsided and questioning contributor rights.
The pod5
Python package contains the tools and python API wrapping the compiled bindings
for the POD5 file format from lib_pod5
.
The pod5
package is available on pypi and is
installed using pip
:
> pip install pod5
To read a pod5
file provide the the Reader
class with the input pod5
file path
and call Reader.reads()
to iterate over read records in the file. The example below
prints the read_id of every record in the input pod5
file.
import pod5 as p5
with p5.Reader("example.pod5") as reader:
for read_record in reader.reads():
print(read_record.read_id)
To iterate over a selection of read_ids supply Reader.reads()
with a collection
of read_ids which must be UUID
compatible:
import pod5 as p5
# Create a collection of read_id UUIDs
read_ids: List[str] = [
"00445e58-3c58-4050-bacf-3411bb716cc3",
"00520473-4d3d-486b-86b5-f031c59f6591",
]
with p5.Reader("example.pod5") as reader:
for read_record in reader.reads(selection=read_ids):
assert str(read_record.read_id) in read_ids
Here is an example of how a user may plot a read’s signal data against time.
import matplotlib.pyplot as plt
import numpy as np
import pod5 as p5
# Using the example pod5 file provided
example_pod5 = "test_data/multi_fast5_zip.pod5"
selected_read_id = '0000173c-bf67-44e7-9a9c-1ad0bc728e74'
with p5.Reader(example_pod5) as reader:
# Read the selected read from the pod5 file
# next() is required here as Reader.reads() returns a Generator
read = next(reader.reads(selection=[selected_read_id]))
# Get the signal data and sample rate
sample_rate = read.run_info.sample_rate
signal = read.signal
# Compute the time steps over the sampling period
time = np.arange(len(signal)) / sample_rate
# Plot using matplotlib
plt.plot(time, signal)
The pod5
package provides the functionality to write POD5 files.
It is strongly recommended that users first look at the available tools when manipulating existing datasets, as there may already be a tool to meet your needs. New tools may be added to support our users and if you have a suggestion for a new tool or feature please submit a request on the pod5-file-format GitHub issues page.
Below is an example of how one may add reads to a new POD5 file using the Writer
and its add_read()
method.
import pod5 as p5
# Populate container classes for read metadata
pore = p5.Pore(channel=123, well=3, pore_type="pore_type")
calibration = p5.Calibration(offset=0.1, scale=1.1)
end_reason = p5.EndReason(name=p5.EndReasonEnum.SIGNAL_POSITIVE, forced=False)
run_info = p5.RunInfo(
acquisition_id = ...
acquisition_start_time = ...
adc_max = ...
...
)
signal = ... # some signal data as numpy np.int16 array
read = p5.Read(
read_id=UUID("0000173c-bf67-44e7-9a9c-1ad0bc728e74"),
end_reason=end_reason,
calibration=calibration,
pore=pore,
run_info=run_info,
...
signal=signal,
)
with p5.Writer("example.pod5") as writer:
# Write the read object
writer.add_read(read)
The pod5
package provides the following tools for inspecting and manipulating
POD5 files as well as converting between .pod5
and .fast5
file formats.
To disable the tqdm <https://github.com/tqdm/tqdm>
_ progress bar set the environment
variable POD5_PBAR=0
.
To enable debugging output which may also output detailed log files, set the environment
variable POD5_DEBUG=1
The pod5 view
tool is used to produce a table similarr to a sequencing summary
from the contents of .pod5
files. The default output is a tab-separated table
written to stdout with all available fields.
This tools is indented to replace pod5 inspect reads
and is over 200x faster.
> pod5 view --help
# View the list of fields with a short description in-order (shortcut -L)
> pod5 view --list-fields
# Write the summary to stdout
> pod5 view input.pod5
# Write the summary of multiple pod5s to a file
> pod5 view *.pod5 --output summary.tsv
# Write the summary as a csv
> pod5 view *.pod5 --output summary.csv --separator ','
# Write only the read_ids with no header (shorthand -IH)
> pod5 view input.pod5 --ids --no-header
# Write only the listed fields
# Note: The field order is fixed the order shown in --list-fields
> pod5 view input.pod5 --include "read_id, channel, num_samples, end_reason"
# Exclude some unwanted fields
> pod5 view input.pod5 --exclude "filename, pore_type"
The pod5 inspect
tool can be used to extract details and summaries of
the contents of .pod5
files. There are two programs for users within pod5 inspect
and these are read and reads
> pod5 inspect --help
> pod5 inspect {reads, read, summary} --help
:warning: This tool is deprecated and has been replaced by
pod5 view
which is significantly faster.
Inspect all reads and print a csv table of the details of all reads in the given .pod5
files.
> pod5 inspect reads pod5_file.pod5
read_id,channel,well,pore_type,read_number,start_sample,end_reason,median_before,calibration_offset,calibration_scale,sample_count,byte_count,signal_compression_ratio
00445e58-3c58-4050-bacf-3411bb716cc3,908,1,not_set,100776,374223800,signal_positive,205.3,-240.0,0.1,65582,58623,0.447
00520473-4d3d-486b-86b5-f031c59f6591,220,1,not_set,7936,16135986,signal_positive,192.0,-233.0,0.1,167769,146495,0.437
...
Inspect the pod5 file, find a specific read and print its details.
> pod5 inspect read pod5_file.pod5 00445e58-3c58-4050-bacf-3411bb716cc3
File: out-tmp/output.pod5
read_id: 0e5d6827-45f6-462c-9f6b-21540eef4426
read_number: 129227
start_sample: 367096601
median_before: 171.889404296875
channel data:
channel: 2366
well: 1
pore_type: not_set
end reason:
name: signal_positive
forced False
calibration:
offset: -243.0
scale: 0.1462070643901825
samples:
sample_count: 81040
byte_count: 71989
compression ratio: 0.444
run info
acquisition_id: 2ca00715f2e6d8455e5174cd20daa4c38f95fae2
acquisition_start_time: 2021-07-23 13:48:59.780000
adc_max: 0
adc_min: 0
context_tags
barcoding_enabled: 0
basecall_config_filename: dna_r10.3_450bps_hac_prom.cfg
experiment_duration_set: 2880
...
pod5 merge
is a tool for merging multiple .pod5
files into one monolithic pod5 file.
The contents of the input files are checked for duplicate read_ids to avoid
accidentally merging identical reads. To override this check set the argument
-D / --duplicate-ok
# View help
> pod5 merge --help
# Merge a pair of pod5 files
> pod5 merge example_1.pod5 example_2.pod5 --output merged.pod5
# Merge a glob of pod5 files
> pod5 merge *.pod5 -o merged.pod5
# Merge a glob of pod5 files ignoring duplicate read ids
> pod5 merge *.pod5 -o merged.pod5 --duplicate-ok
pod5 filter
is a simpler alternative to pod5 subset
where reads are subset from
one or more input .pod5
files using a list of read ids provided using the --ids
argument
and writing those reads to a single --output
file.
See pod5 subset
for more advanced subsetting.
> pod5 filter example.pod5 --output filtered.pod5 --ids read_ids.txt
The --ids
selection text file must be a simple list of valid UUID read_ids with
one read_id per line. Only records which match the UUID regex (lower-case) are used.
Lines beginning with a #
(hash / pound symbol) are interpreted as comments.
Empty lines are not valid and may cause errors during parsing.
The
filter
andsubset
tools will assert that any requested read_ids are present in the inputs. If a requested read_id is missing from the inputs then the tool will issue the following error:
POD5 has encountered an error: 'Missing read_ids from inputs but --missing-ok not set'
To disable this warning then the '-M / --missing-ok' argument.
When supplying multiple input files to 'filter' or 'subset', the tools is
effectively performing a merge
operation. The 'merge' tool is better suited
for handling very large numbers of input files.
This is a trivial example of how to select a random sample of 1000 read_ids from a
pod5 file using pod5 view
and pod5 filter
.
# Get a random selection of read_ids
> pod5 view all.pod5 --ids --no-header --output all_ids.txt
> all_ids.txt sort --random-sort | head --lines 1000 > 1k_ids.txt
# Filter to that selection
> pod5 filter all.pod5 --ids 1k_ids.txt --output 1k.pod5
# Check the output
> pod5 view 1k.pod5 -IH | wc -l
1000
pod5 subset
is a tool for subsetting reads in .pod5
files into one or more
output .pod5
files. See also pod5 filter
The pod5 subset
tool requires a mapping which defines which read_ids should be
written to which output. There are multiple ways of specifying this mapping which are
defined in either a .csv
file or by using a --table
(csv or tsv)
and instructions on how to interpret it.
pod5 subset
aims to be a generic tool to subset from multiple inputs to multiple outputs.
If your use-case is to filter
read_ids from one or more inputs into a single output
then pod5 filter
might be a more appropriate tool as the only input is a list of read_ids.
# View help
> pod5 subset --help
# Subset input(s) using a pre-defined mapping
> pod5 subset example_1.pod5 --csv mapping.csv
# Subset input(s) using a dynamic mapping created at runtime
> pod5 subset example_1.pod5 --table table.txt --columns barcode
Care should be taken to ensure that when providing multiple input
.pod5
files topod5 subset
that there are no read_id UUID clashes. If a duplicate read_id is detected an exception will be raised unless the--duplicate-ok
argument is set. If--duplicate-ok
is set then both reads will be written to the output, although this is not recommended.
The
--columns
argument will greedily consume values and as such, care should be taken with the placement of any positional arguments. The following line will result in an error as the input pod5 file is consumed by--columns
resulting in no input file being set.
# Invalid placement of positional argument example.pod5
$ pod5 subset --table table.txt --columns barcode example.pod5
The example below shows a .csv
subset target mapping. Any lines (e.g. header line)
which do not have a read_id which matches the UUID regex (lower-case) in the second
column is ignored.
target, read_id
output_1.pod5,132b582c-56e8-4d46-9e3d-48a275646d3a
output_1.pod5,12a4d6b1-da6e-4136-8bb3-1470ef27e311
output_2.pod5,0ff4dc01-5fa4-4260-b54e-1d8716c7f225
output_2.pod5,0e359c40-296d-4edc-8f4a-cca135310ab2
output_2.pod5,0e9aa0f8-99ad-40b3-828a-45adbb4fd30c
pod5 subset
can dynamically generate output targets and collect associated reads
based on a text file containing a table (csv or tsv) parsible by polars
.
This table file could be the output from pod5 view
or from a sequencing summary.
The table must contain a header row and a series of columns on which to group unique
collections of values. Internally this process uses the
polars.Dataframe.group_by <https://pola-rs.github.io/polars/py-polars/html/reference/dataframe/api/polars.DataFrame.group_by.html>
_
function where the by
parameter is the sequence of column names specified with
the --columns
argument.
Given the following example --table
file, observe the resultant outputs given various
arguments:
read_id mux barcode length
read_a 1 barcode_a 4321
read_b 1 barcode_b 1000
read_c 2 barcode_b 1200
read_d 2 barcode_c 1234
> pod5 subset example_1.pod5 --output barcode_subset --table table.txt --columns barcode
> ls barcode_subset
barcode-barcode_a.pod5 # Contains: read_a
barcode-barcode_b.pod5 # Contains: read_b, read_c
barcode-barcode_c.pod5 # Contains: read_d
> pod5 subset example_1.pod5 --output mux_subset --table table.txt --columns mux
> ls mux_subset
mux-1.pod5 # Contains: read_a, read_b
mus-2.pod5 # Contains: read_c, read_d
> pod5 subset example_1.pod5 --output barcode_mux_subset --table table.txt --columns barcode mux
> ls barcode_mux_subset
barcode-barcode_a_mux-1.pod5 # Contains: read_a
barcode-barcode_b_mux-1.pod5 # Contains: read_b
barcode-barcode_b_mux-2.pod5 # Contains: read_c
barcode-barcode_c_mux-2.pod5 # Contains: read_d
When subsetting using a table the output filename is generated from a template
string. The automatically generated template is the sequential concatenation of
column_name-column_value
followed by the .pod5
file extension.
The user can set their own filename template using the --template
argument.
This argument accepts a string in the Python f-string style <https://docs.python.org/3/tutorial/inputoutput.html#formatted-string-literals>
_
where the subsetting variables are used for keyword placeholder substitution.
Keywords should be placed within curly-braces. For example:
# default template used = "barcode-{barcode}.pod5"
> pod5 subset example_1.pod5 --output barcode_subset --table table.txt --columns barcode
# default template used = "barcode-{barcode}_mux-{mux}.pod5"
> pod5 subset example_1.pod5 --output barcode_mux_subset --table table.txt --columns barcode mux
> pod5 subset example_1.pod5 --output barcode_subset --table table.txt --columns barcode --template "{barcode}.subset.pod5"
> ls barcode_subset
barcode_a.subset.pod5 # Contains: read_a
barcode_b.subset.pod5 # Contains: read_b, read_c
barcode_c.subset.pod5 # Contains: read_d
pod5 inspect reads
The pod5 inspect reads
tool will output a csv table summarising the content of the
specified .pod5
file which can be used for subsetting. The example below shows
how to split a .pod5
file by the well field.
# Create the csv table from inspect reads
> pod5 inspect reads example.pod5 > table.csv
> pod5 subset example.pod5 --table table.csv --columns well
pod5 repack
will simply repack .pod5
files into one-for-one output files of the same name.
> pod5 repack pod5s/*.pod5 repacked_pods/
pod5 recover
will attempt to recover data from corrupted or truncated .pod5
files
by copying all valid table batches and cleanly closing the new files. New files are written
as siblings to the inputs with the _recovered.pod5
suffix.
> pod5 recover --help
> pod5 recover broken.pod5
> ls
broken.pod5 broken_recovered.pod5
The pod5 convert fast5
tool takes one or more .fast5
files and converts them
to one or more .pod5
files.
If the tool detects single-read fast5 files, please convert them into multi-read
fast5 files using the tools available in the ont_fast5_api
project.
The progress bar shown during conversion assumes the number of reads in an input
.fast5
is 4000. The progress bar will update the total value during runtime if
required.
Some content previously stored in
.fast5
files is not compatible with the POD5 format and will not be converted. This includes all analyses stored in the.fast5
file.Please ensure that any other data is recovered from
.fast5
before deletion.
By default pod5 convert fast5
will show exceptions raised during conversion as warnings
to the user. This is to gracefully handle potentially corrupt input files or other
runtime errors in long-running conversion tasks. The --strict
argument allows
users to opt-in to strict runtime assertions where any exception raised will promptly
stop the conversion process with an error.
# View help
> pod5 convert fast5 --help
# Convert fast5 files into a monolithic output file
> pod5 convert fast5 ./input/*.fast5 --output converted.pod5
# Convert fast5 files into a monolithic output in an existing directory
> pod5 convert fast5 ./input/*.fast5 --output outputs/
> ls outputs/
output.pod5 # default name
# Convert each fast5 to its relative converted output. The output files are written
# into the output directory at paths relatve to the path given to the
# --one-to-one argument. Note: This path must be a relative parent to all
# input paths.
> ls input/*.fast5
file_1.fast5 file_2.fast5 ... file_N.fast5
> pod5 convert fast5 ./input/*.fast5 --output output_pod5s/ --one-to-one ./input/
> ls output_pod5s/
file_1.pod5 file_2.pod5 ... file_N.pod5
# Note the different --one-to-one path which is now the current working directory.
# The new sub-directory output_pod5/input is created.
> pod5 convert fast5 ./input/*.fast5 output_pod5s --one-to-one ./
> ls output_pod5s/
input/file_1.pod5 input/file_2.pod5 ... input/file_N.pod5
# Convert all inputs so that they have neibouring pod5 in current directory
> pod5 convert fast5 *.fast5 --output . --one-to-one .
> ls
file_1.fast5 file_1.pod5 file_2.fast5 file_2.pod5 ... file_N.fast5 file_N.pod5
# Convert all inputs so that they have neibouring pod5 files from a parent directory
> pod5 convert fast5 ./input/*.fast5 --output ./input/ --one-to-one ./input/
> ls input/*
file_1.fast5 file_1.pod5 file_2.fast5 file_2.pod5 ... file_N.fast5 file_N.pod5
The pod5 convert to_fast5
tool takes one or more .pod5
files and converts them
to multiple .fast5
files. The default behaviour is to write 4000 reads per output file
but this can be controlled with the --file-read-count
argument.
# View help
> pod5 convert to_fast5 --help
# Convert pod5 files to fast5 files with default 4000 reads per file
> pod5 convert to_fast5 example.pod5 --output pod5_to_fast5/
> ls pod5_to_fast5/
output_1.fast5 output_2.fast5 ... output_N.fast5
The pod5 update
tools is used to update old pod5 files to use the latest schema.
Currently the latest schema version is version 3.
Files are written into the --output
directory with the same name.
> pod5 update --help
# Update a named files
> pod5 update my.pod5 --output updated/
> ls updated
updated/my.pod5
# Update an entire directory
> pod5 update old/ -o updated/
FAQs
Oxford Nanopore Technologies Pod5 File Format Python API and Tools
We found that pod5 demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Fluent Assertions is facing backlash after dropping the Apache license for a commercial model, leaving users blindsided and questioning contributor rights.
Research
Security News
Socket researchers uncover the risks of a malicious Python package targeting Discord developers.
Security News
The UK is proposing a bold ban on ransomware payments by public entities to disrupt cybercrime, protect critical services, and lead global cybersecurity efforts.