Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

pycomp

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

pycomp

Fábrica de componentes Python

  • 0.3.3
  • PyPI
  • Socket score

Maintainers
1

pycomp Logo

Fábrica de componentes Python

Release PyPI PyPI - Downloads PyPI - Python Version PyPI - Status


Literalmente, uma fábrica de componentes em Python criada para auxiliar implementações, automações e até treinamento de modelos de Machine Learning! O objetivo desse pacote é propor uma forma mais fácil de se trabalhar com Python a partir do fornecimento de componentes prontos (funções e classes) para uma série de atividades rotineiras e exploratórias.

Features

  • :file_folder: fs: módulo responsável por auxiliar o manuseio de arquivos em sistemas operacionais. Em seu conteúdo, é possível encontrar funções úteis para a cópia de arquivos de um diretório origem para um diretório destino, além de funções utilizadas para a validação de presença e atualização de arquivos, entre outras.

  • :pencil: log: módulo com o objetivo de facilitar a geração, configuração e o armazenamento de logs de execução dos demais módulos do pacote.

  • :robot: ml: provavelmente o mais completo do pacote, o módulo ml (machine learning) contém componentes apropriados para a construção e aplicação de pipelines de pré-processamento de dados, além de blocos de código responsáveis por automatizar o treinamento e avaliação de modelos de aprendizado de máquina.

  • :bar_chart: viz: módulo responsável por propor componentes prontos para geração e customização de gráficos utilizando as bibliotecas matplotlib e seaborn. As funções contidas neste módulo trazem códigos consolidados para geração de insights em bases de dados a partir de análises gráficas personalizadas.

A fábrica está a todo vapor! Com mais de 2 mil linhas de código, sua capacidade de produção e seu leque de fornecimento pode ser resumido em:

TópicoMóduloFunçõesClassesComponentes TotaisLinhas de Código
File Systempycomp.fs.arquivos404~300
Logspycomp.log.log_config101~70
Machine Learningpycomp.ml.transformers099~400
pycomp.ml.trainer25126~1500
Vizpycomp.viz.formatador213~100
pycomp.viz.insights505~700

Instalação

A última versão do pacote pycomp encontra-se publicada no repositório PyPI.

Nota: Como boa prática, recomenda-se a criação de um ambiente virual env Python para alocar as bibliotecas do projeto a ser desenvolvido. Caso não tenha um virtual env criado, o bloco de código abaixo pode ser utilizado para a criação de ambiente virtual em um diretório específico:

# Criando diretório para o virtual env
$ mkdir ~/<nome diretorio> # ou qualquer outro caminho
$ cd ~/<nome diretorio>

# Criando ambiente virtual
$ python3 -m venv <nome venv>

Utilizando uma ferramenta de desenvolvimento (IDE ou a própria linha de comando), ative o ambiente virtual de trabalho:

$ source ~/<nome diretorio>/<nome venv>/bin/activate

Após a ativação, é possível instalar o pacote pycomp via pip:

# Atualizando pip e instalando pycomp
$ pip install pycomp --upgrade

Nota: o pacote pycomp é construído como uma ferramenta de top level em cima de outros pacotes conhecidos em Python, como sklearn, pandas e numpy. Ao instalar o pycomp, as dependências especificadas também serão instaladas automaticamente em seu ambiente virtual de trabalho.

Resumo do output esperado no cmd após a instalação do pacote::

Collecting pycomp
[...]
Installing collected packages: numpy, pytz, six, python-dateutil, pandas, joblib, scipy, threadpoolctl, scikit-learn, tqdm, slicer, llvmlite, numba, shap, pyparsing, cycler, certifi, kiwisolver, pillow, matplotlib, seaborn, pycomp
  Running setup.py install for numba ... done
  Running setup.py install for shap ... done
Successfully installed certifi-2020.11.8 cycler-0.10.0 joblib-0.17.0 kiwisolver-1.3.1 llvmlite-0.34.0 matplotlib-3.3.2 numba-0.51.2 numpy-1.19.3 pandas-1.1.3 pillow-8.0.1 pycomp-0.0.15 pyparsing-2.4.7 python-dateutil-2.8.1 pytz-2020.4 scikit-learn-0.23.2 scipy-1.5.4 seaborn-0.11.0 shap-0.37.0 six-1.15.0 slicer-0.0.3 threadpoolctl-2.1.0 tqdm-4.51.0

Utilização

Para demonstrar uma poderosa aplicação do pacote pycomp, será exemplificado abaixo um trecho de código que, em poucas linhas, é responsável por:

  • Consolidar um Pipeline completo de DataPrep utilizando classes transformadoras já preparadas
  • Treinar e avaliar diferentes modelos de classificação (LogisticRegression, DecisionTreeClassifier e RandomForestClassifier)
  • Utilização de RandomizedSearchCV para buscar os melhores hyperparâmetros para cada modelo
  • Registrar os resultados obtidos (dados e gráficos) em um diretório de output
  • Retornar um modelo específico para passos futuros

Como insumo, será utilizado o dataset Titanic obtido a partir da união dos arquivos train.csv e test.csv, gerando assim o input titanic.csv contido no script.

# Importando bibliotecas
import pandas as pd
import numpy as np
from sklearn.pipeline import Pipeline
from sklearn.compose import ColumnTransformer
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from warnings import filterwarnings
filterwarnings('ignore')

from pycomp.ml.transformers import FormataColunas, FiltraColunas, DefineTarget, EliminaDuplicatas, PreencheDadosNulos, SplitDados
from pycomp.ml.trainer import ClassificadorBinario

# Lendo base de dados (titanic data - train + test)
df = pd.read_csv('titanic.csv')
cols_filter = ['survived', 'pclass', 'age', 'sibsp', 'fare']

# Pipeline da primeira camada
first_layer_pipe = Pipeline([
    ('formatter', FormataColunas()),
    ('selector', FiltraColunas(features=cols_filter)),
    ('target_generator', DefineTarget(target_col='survived', pos_class=1.0)),
    ('dup_dropper', EliminaDuplicatas()),
    ('na_filler', PreencheDadosNulos(value_fill=0)),
    ('splitter', SplitDados(target='target'))
])

# Executando pipeline
X_train, X_test, y_train, y_test = first_layer_pipe.fit_transform(df)
features = list(X_train.columns)

# Preparando classificadores
tree_clf = DecisionTreeClassifier()
log_reg = LogisticRegression()
forest_clf = RandomForestClassifier()

# Logistic Regression hyperparameters
logreg_param_grid = {
    'C': np.linspace(0.1, 10, 20),
    'penalty': ['l1', 'l2'],
    'class_weight': ['balanced', None],
    'random_state': [42],
    'solver': ['liblinear']
}

# Decision Trees hyperparameters
tree_param_grid = {
    'criterion': ['entropy', 'gini'],
    'max_depth': [3, 5, 10, 20],
    'max_features': np.arange(1, X_train.shape[1]),
    'class_weight': ['balanced', None],
    'random_state': [42]
}

# Random Forest hyperparameters
forest_param_grid = {
    'bootstrap': [True, False],
    'max_depth': [3, 5, 10, 20, 50],
    'n_estimators': [50, 100, 200, 500],
    'random_state': [42],
    'max_features': ['auto', 'sqrt'],
    'class_weight': ['balanced', None]
}

# Configurando classificadores
set_classifiers = {
    'LogisticRegression': {
        'model': log_reg,
        'params': logreg_param_grid
    },
    'DecisionTree': {
        'model': tree_clf,
        'params': tree_param_grid
    },
    'RandomForest': {
        'model': forest_clf,
        'params': forest_param_grid
    }
}

# Definindo variáveis de execução
OUTPUT_PATH = 'output/'

# Inicializando objeto
trainer = ClassificadorBinario()

# Fluxo de treino
trainer.training_flow(set_classifiers, X_train, y_train, X_test, y_test, features, output_path=OUTPUT_PATH, random_search=True)

# Análise gŕafica
trainer.visual_analysis(features=features, model_shap='DecisionTree', output_path=OUTPUT_PATH)

# Retornando informações relevantes de um modelo específico
model = trainer._get_estimator(model_name='RandomForest')
metrics = trainer._get_metrics(model_name='RandomForest')
model_info = trainer._get_model_info(model_name='RandomForest')
classifiers_info = trainer._get_classifiers_info()

Ao utilizar as ferramentas disponibilizadas no módulo ml do pacote pycomp, o usuário consegue facilmente construir e executar um Pipeline de preparação de dados enxuto e otimizado a partir das classes pré definidas no módulo transformers. Em complemento a essa feature, o módulo trainer traz consigo a classe ClassificadorBinario com o objetivo de facilitar o treinamento e avaliação de classificadores binários. O usuário final necessita apenas fornecer uma base de dados como input, os estimators (modelos a serem treinados) e seus respectivos hyperparâmetros de busca a serem utilizados no processo.

Outputs

Ao realizar a importação do pacote pycomp no script, um objeto logger da biblioteca logging é instanciado automaticamente, gerando assim um arquivo exec_log/execution_log.log no mesmo diretório de execução do script com os detalhes de cada passo dado nas funções e métodos aplicados. A cada execução do exemplo acima, espera-se que as seguintes mensagens sejam registradas no arquivo de log apresentadas no cmd:

DEBUG;2020-11-15 09:25:05;trainer.py;trainer;224;Treinando modelo LogisticRegression
DEBUG;2020-11-15 09:25:05;trainer.py;trainer;236;Aplicando RandomizedSearchCV
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 4 concurrent workers.
[Parallel(n_jobs=-1)]: Done  50 out of  50 | elapsed:    1.2s finished
DEBUG;2020-11-15 09:25:06;trainer.py;trainer;248;Salvando arquivo pkl do modelo LogisticRegression treinado
DEBUG;2020-11-15 09:25:06;trainer.py;trainer;132;Salvando modelo pkl no diretório especificado
DEBUG;2020-11-15 09:25:06;trainer.py;trainer;224;Treinando modelo DecisionTree
DEBUG;2020-11-15 09:25:06;trainer.py;trainer;236;Aplicando RandomizedSearchCV
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 4 concurrent workers.
[Parallel(n_jobs=-1)]: Done  50 out of  50 | elapsed:    0.2s finished
DEBUG;2020-11-15 09:25:06;trainer.py;trainer;248;Salvando arquivo pkl do modelo DecisionTree treinado
DEBUG;2020-11-15 09:25:06;trainer.py;trainer;132;Salvando modelo pkl no diretório especificado
DEBUG;2020-11-15 09:25:06;trainer.py;trainer;224;Treinando modelo RandomForest
[...]
DEBUG;2020-11-15 09:26:36;trainer.py;trainer;1145;Plotando curvas de aprendizado de treino e validação para o modelo RandomForest
DEBUG;2020-11-15 09:26:36;trainer.py;trainer;172;Salvando imagem no diretório especificado
INFO;2020-11-15 09:26:37;trainer.py;trainer;176;Imagem salva com sucesso em output/imgs/learning_curve.png
DEBUG;2020-11-15 09:26:37;trainer.py;trainer;1187;Explicando o modelo DecisionTree através da análise shap
DEBUG;2020-11-15 09:26:37;trainer.py;trainer;1195;Retornando parâmetros da classe para o modelo DecisionTree
DEBUG;2020-11-15 09:26:37;trainer.py;trainer;1205;Criando explainer e gerando valores shap para o modelo DecisionTree
DEBUG;2020-11-15 09:26:38;trainer.py;trainer;1218;Plotando análise shap para o modelo DecisionTree
DEBUG;2020-11-15 09:26:38;trainer.py;trainer;172;Salvando imagem no diretório especificado
INFO;2020-11-15 09:26:38;trainer.py;trainer;176;Imagem salva com sucesso em output/imgs/shap_analysis_DecisionTree.png
DEBUG;2020-11-15 09:26:38;trainer.py;trainer;1305;Retornando estimator do modelo RandomForest já treinado
DEBUG;2020-11-15 09:26:38;trainer.py;trainer;1326;Retornando as métricas dos modelos treinados
DEBUG;2020-11-15 09:26:38;trainer.py;trainer;1366;Retornando informações registradas do modelo RandomForest

Ao definir um diretório de saída, as execuções dos métodos training_flow() e visual_analysis() da classe ClassificadorBinario irão gerar arquivos úteis para uma definitiva avaliação do melhor classificador para a respectiva tarefa. No código utilizado como exemplo, a variável OUTPUT_PATH recebe a string 'output/' e, por consequência, gera os seguintes arquivos ao final da execução:

$ tree output/
output/
├── imgs
│   ├── confusion_matrix.png
│   ├── feature_importance.png
│   ├── learning_curve.png
│   ├── metrics_comparison.png
│   ├── roc_curve.png
│   ├── score_bins_percent.png
│   ├── score_bins.png
│   ├── score_distribution.png
│   └── shap_analysis_DecisionTree.png
├── metrics
│   ├── metrics.csv
│   └── top_features.csv
└── models
    ├── decisiontree.pkl
    ├── logisticregression.pkl
    └── randomforest.pkl

Próximos Passos

  • Consolidar função visual_analysis() para gerar todas as análises acima (trainer.py)
  • Consturção de funções para análise categórica em processo de EDA (insights.py)
  • Criação de guideline para utilização do módulo transformers.py
  • Criação de guideline para utilização do módulo trainer.py
  • Criação de guideline para utilização do módulo insights.py
  • Brainstorming para pipelines automáticos de prep + treino (transformers.py + trainer.py)
  • Inserir GIF de demonstração do projeto
  • Finalização do módulo insights para plotagens gráficas e aplicação de EDA em bases de dados (insights.py)

Guidelines

De modo a propor uma maior democratização do pacote pycomp, foram construídos alguns "notebooks-guidelines" em espécies de demonstração das principais aplicações dos módulos pycomp em situações prática de uso. Assim, na pastas guidelines/ do projeto no Github, é possível encontrar diferentes arquivos .ipynb contendo:

  • insights_guideline.ipynb: aplicação do módulo insights.py para a construção de plotagens gráficos dentro de um processo de exploração de uma base de dados em caráter investigativo, analisando os dados e propondo insights para possíveis problemas de negócio.
  • transformers_guideline.ipynb: em complemento ao módulo insights.py, o módulo transformers.py atua na continuação na cadeia de desenvolvimento de uma solução completa em ciência de dados. Neste notebook explicativo, o objetivo é construir um pipeline completo de transformação de uma base de dados lida.
  • trainer_guideline.ipynb: por fim, finalizando o desenvolvimento da solução, o notebook explicativo para o módulo trainer.py atua de modo a evidenciar um exemplo prático de treinamento e avaliação de um modelo preditivo em uma base já preparada a partir de um pipeline construído previamente com as ferramentas do módulo transformers.py

Referências

Géron A., ed. (2017) Hands-On Machine Learning with Scikit-Learn & TensorFlow. 1st ed. California: O'Reilly

Géron A., handson-ml, (2020), GitHub repository, https://github.com/ageron/handson-ml

Stanford University (Producer). (2019). Machine Learning. Retrieved from https://www.coursera.org/learn/machine-learning/home/welcome

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc