Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

pyflattener

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

pyflattener

Flatten nested python objects.

  • 1.1.0
  • PyPI
  • Socket score

Maintainers
1

pyflattener

One useful utility for making Swimlane Bundles is the Flattener, which helps to simplify complex JSON.

Basic Usage

from pyflattener import Flattener, do_flatten

data = {
    "outer_key": {
        "inner_key1": "inner val 1",
        "inner_key2": "inner val 2"
    },
    "basic_key": "value",
    "basic_list": ["1", "2", "3"],
    "mixed_list": [1, "2", "3"],
    "basic_list2": [1, 2, 3]
}

# Simple flatten
flat_data = do_flatten(data)

# Instance analogue
flat_data = Flattener(prefix=None, stringify_lists=True, shallow_flatten=False,
                      keep_simple_lists=True, autoparse_dt_strs=True).flatten(data)

flat_data will now look like:

{
'outer_key_inner_key1': 'inner val 1',
'basic_list': ['1', '2', '3'],  # Simple list kept as a list
'basic_key': 'value',
'outer_key_inner_key2': 'inner val 2',
'basic_list2': [1, 2, 3],  # Simple list kept as list
'mixed_list': '1,2,3'  # Nonsimple list CVSV'd
}

Here is a description of the params you can pass to a Flattener() object or do_flatten

Prefix

Prefix to add to the data after flattening

do_flatten({"a": 5}, prefix="my_prefix")
# {"my_prefix_a": 5}

Stringify Lists

Turn lists with basic types into CSV, defaults to True. This option is ignored for simple lists if keep_simple_lists is True

stringify = <True or False>
do_flatten({"a": [1,2,3]}, stringify_lists=stringify, keep_simple_lists=False)
# True -> {"a": "1,2,3"}
# False -> {"a": [1,2,3]}

Shallow Flatten

Ignore the first level of nesting, and only flatten each element within it. Used for lists of dictionaries

data = [
    {"a": { "sub_a": 1 }, "b": 5},
    {"a": { "sub_a": 2 }, "b": 6},
]
shallow = <True or False>
do_flatten(data, shallow_flatten=shallow)
# True -> [
#    {"a_sub_a": 1, "b": 5},
#    {"a_sub_a": 2, "b": 6}
# ]

# False -> {"a_sub_a": [1,2], "b": [5,6]}

Keep Simple Lists

If a list in the resulting flattened dict is only integers or only strings, even if stringify_lists is True, keep this list

simple = <True or False>
do_flatten({"a": [1,2,3], "b": ["c", 4]}, keep_simple_lists=simple)
# True -> {"a": [1,2,3], "b": "c,4"}
# False -> {"a": "1,2,3", "b": "c,4"}

Misc Flattening Functions

There are many useful flattening functions for more complicated data

Hoist Key(s)

Grab keys from a list of dicts

hoist_key("a", [{"a": 5}, {"a": 6}])
# -> [5, 6]

hoist_keys(["a", "b"], [{"a": 5, "b": 1}, {"a": 6, "b": 2}])
# -> [[5, 6], [1, 2]]

Replace Dict Prefix

Replace a prefix in a dictionary

replace_dict_prefix("aaa", "bbbb", {"aaa_data": 5})
# -> {'bbbb_data': 5}
# Or more commonly like:

replace_dict_prefix("aaa_", "", {"aaa_data": 5})
# -> {'data': 5}

Merge Dicts

Merge two dictionaries together, regardless if they share keys or not. If they share keys, it uses combine_listdict

merge_dicts({"a": 1}, {"b": 2})
# -> {"a": 1, "b": 2}

merge_dicts({"a": 1}, {"a": 2})
# -> {"a": [1, 2]})

Is SimpleList

Check if a list is purely of integers or purely of strings

is_simplelist([1,2,3])
# -> True
is_simplelist([1,2,"3"])
# -> False

Flatten Single Lists

Flatten all keys in a dict that are lists with a single entry

flatten_single_lists({"a": [1,2,3], "b": [5]})
# -> {"b": 5,"a": [1, 2, 3]}

Combine ListDict

Combine a list of dictionaries into a single dictionary

combine_listdict([{"a": 1},{"a": 2}, {"a": 3}])
# -> {"a": [1, 2, 3]}

complicated_data = [
    {
        "a": "entry 1",
        "b": "v1"
    },
    {
        "b": "v2"
    },
    {
        "a": "entry 2"
    }
]
combine_listdict(complicated_data)
# -> {
#   'a': ['entry 1', None, 'entry 2'],
#   'b': ['v1', 'v2', None]
#}

Note how the missing entries were filled in with None This is to ensure the ordering of elements can be obtained in the flattened dict result.

Also note that attempting to combine a list of dictionaries with nonbasic keys (subdicts or lists) can lead to odd results, or not be possible to combine in that form

Clean XMLToDict Result

XMLToDict returns very ugly data, this helps clean it up. It only cleans top-level keys, so it is most effective after flattening

import xmltodict

ugly_xml = "<xml><key attr=\"5\">val</key></xml>"
xml_dict = xmltodict.parse(ugly_xml)
clean_xmltodict_result(do_flatten(xml_dict))
# -> {u'xml_key_text': u'val', u'xml_key_attr': "5"}

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc