PyPop7: a Pure-PYthon open-source library of POPulation-based (evolution / swarm / pattern search) black-box OPtimization
PyPop7
is a Pure-PYthon open-source library of POPulation-based OPtimization for single-objective, real-parameter, black-box problems (currently actively maintained). Its goal is to provide a unified interface and a set of elegant algorithmic implementations (e.g., evolutionary algorithms, swarm-based optimizers, pattern search, etc.) for Black-Box Optimization (BBO), particularly population-based optimizers, in order to facilitate research repeatability, benchmarking of BBO, and especially real-world applications.
More specifically, for alleviating their curse of dimensionality, the focus of PyPop7
is to cover their State Of The Art for Large-Scale Optimization (LSO), though many of their small/medium-scaled versions and variants are also included here (mainly for theoretical or benchmarking or educational purposes). For a list of public use cases of PyPop7
, please refer to this online document for details. Although we have chosen GPL-3.0 license, anyone could use, modify, and improve this open-source Python library entirely freely for any (no matter open-source or closed-source) purpose.
How to Quickly Use
The following three steps are enough to utilize the black-box optimization power of this library PyPop7:
- Use pip to install
pypop7
on the Python3-based virtual environment via venv or conda:
$ pip install pypop7
- Define the objective/cost/fitness function to be minimized for the optimization problem at hand,
import numpy as np
def rosenbrock(x):
return 100.0*np.sum(np.square(x[1:] - np.square(x[:-1]))) + np.sum(np.square(x[:-1] - 1.0))
ndim_problem = 1000
problem = {'fitness_function': rosenbrock,
'ndim_problem': ndim_problem,
'lower_boundary': -5.0*np.ones((ndim_problem,)),
'upper_boundary': 5.0*np.ones((ndim_problem,))}
Note that without loss of generality, only the minimization process is considered in this library, since maximization
can be easily transferred to minimization by negating it.
- Run one or more black-box optimizers on this optimization problem:
from pypop7.optimizers.es.lmmaes import LMMAES
options = {'fitness_threshold': 1e-10,
'max_runtime': 3600,
'seed_rng': 0,
'x': 4.0*np.ones((ndim_problem,)),
'sigma': 3.0,
'verbose': 500}
lmmaes = LMMAES(problem, options)
results = lmmaes.optimize()
print(results)
Note that for PyPop7
, the number 7
is added just because pypop
has been registered by other in PyPI. The icon butterfly for PyPop7
is used to respect to the book (a complete variorum edition) of Fisher, "the greatest of Darwin's successors": The Genetical Theory of Natural Selection (where four butterflies were drawn in its cover), which inspired the proposal of Genetic Algorithms (GA). Please refer to https://pypop.rtfd.io/ for the online documentation of this seemingly well-designed (self-boasted) pure-Python library (several praises from others).
A (Still Growing) Number of Black-Box Optimizers (BBO)
For new/missed BBO, we provide a unified API to freely add them if they satisfy our design philosophy (see development-guide for details). Note that Ant Colony Optimization (ACO) and Tabu Search (TS) are not covered in this open-source Python library, since they work well mainly in discrete/combinatorial search spaces in many cases. Furthermore, brute-force search (exhaustive/grid search) is also excluded here, since it works only for very low (typically << 10) dimensions. In the future version, we will consider adding Simultaneous Perturbation Stochastic Approximation (SPSA) into this open-source Python library.
- : indicates the specific BBO version for LSO (dimension >> 1000).
- : indicates the competitive (or de facto) BBO version for small/medium-dimensional problems (though it may work well under certain LSO circumstances).
- : indicates the baseline BBO version mainly for theoretical/educational interest, owing to its simplicity (relative ease to mathematical analysis).
Note that this classification based on only the dimension of objective function is just a rough estimation for algorithm selection. In practice, perhaps the simplest way to algorithm selection is trial-and-error or to try more advanced Automated Algorithm Selection techniques.
- Evolution Strategies (ES) [e.g., Ollivier et al., 2017, JMLR; Hansen et al., 2015; Bäck et al., 2013; Rudolph, 2012; Beyer&Schwefel, 2002; Rechenberg, 1989; Schwefel, 1984]
- Mixture Model-based ES (MMES) [He et al., 2021, TEVC]
- Limited-Memory Matrix Adaptation ES (LMMAES) [Loshchilov et al., 2019, TEVC]
- Limited Memory Covariance Matrix Adaptation (LMCMA) [Loshchilov, 2017, ECJ]
- Rank-M ES (RMES) [Li&Zhang, 2018, TEVC; Li&Zhang, 2016, PPSN]
- Cholesky-CMA-ES-2016 (CCMAES2016) [Krause et al., 2016, NeurIPS]
- Cholesky-CMA-ES (CCMAES2009) [Suttorp et al., 2009, MLJ]
- Separable Covariance Matrix Adaptation ES (SEPCMAES) [Bäck et al., 2013; Ros&Hansen, 2008, PPSN]
- Diagonal Decoding Covariance Matrix Adaptation (DDCMA) [Akimoto&Hansen, 2020, ECJ]
- Matrix Adaptation ES (MAES) [Beyer&Sendhoff, 2017, TEVC]
- Covariance Matrix Adaptation ES (CMAES) [e.g. Hansen, 2016; Hansen et al., 2003, ECJ; Hansen et al., 2001, ECJ; Hansen&Ostermeier, 1996, CEC]
- Self-Adaptation Matrix Adaptation ES (SAMAES) [Beyer, 2020, GECCO]
- Self-Adaptation ES (SAES) [e.g. Beyer, 2020, GECCO; Beyer, 2007, Scholarpedia]
- Cumulative Step-size Adaptation ES (CSAES) [e.g. Hansen et al., 2015; Ostermeier et al., 1994, PPSN]
- Derandomized Self-Adaptation ES (DSAES) [e.g. Hansen et al., 2015; Ostermeier et al., 1994, ECJ]
- Schwefel's Self-Adaptation ES (SSAES) [e.g. Hansen et al., 2015; Beyer&Schwefel, 2002; Schwefel, 1988; Schwefel, 1984, AOR]
- Rechenberg's (1+1)-ES with 1/5th success rule (RES) [e.g. Hansen et al., 2015; Kern et al., 2004; Rechenberg, 1989; Rechenberg, 1984; Schumer&Steiglitz, 1968, TAC]
- Natural ES (NES) [e.g., Hüttenrauch&Neumann, 2024, JMLR; Wierstra et al., 2014, JMLR; Yi et al., 2009, ICML; Wierstra et al., 2008, CEC]
- Projection-based Covariance Matrix Adaptation (VKDCMA) [Akimoto&Hansen, 2016, PPSN; Akimoto&Hansen, 2016, GECCO]
- Linear Covariance Matrix Adaptation (VDCMA) [Akimoto et al., 2014, GECCO]
- Rank-One NES (R1NES) [Sun et al., 2013, GECCO]
- Separable NES (SNES) [Schaul et al., 2011, GECCO]
- Exponential NES (XNES) [e.g. Glasmachers et al., 2010, GECCO]
- Exact NES (ENES) [e.g. Sun et al., 2009, ICML]
- Original NES (ONES) [e.g. Wierstra et al., 2008, CEC]
- Search Gradient-based ES (SGES) [e.g. Wierstra et al., 2008, CEC]
- Estimation of Distribution Algorithms (EDA) [e.g., Brookes et al., 2020, GECCO; Larrañaga&Lozano, 2002; Pelikan et al., 2002; Mühlenbein&Paaß, 1996, PPSN; Baluja&Caruana, 1995, ICML]
- Cross-Entropy Method (CEM) [e.g., Rubinstein&Kroese, 2016; Hu et al., 2007, OR; Kroese et al., 2006, MCAP; De Boer et al., 2005, AOR; Rubinstein&Kroese, 2004]
- Differential Evolution (DE) [e.g., Price, 2013; Price et al., 2005; Storn&Price, 1997, JGO]
- Success-History based Adaptive DE (SHADE) [Tanabe&Fukunaga, 2013, CEC]
- Adaptive DE (JADE) [Zhang&Sanderson, 2009, TEVC]
- Composite DE (CODE) [Wang et al., 2011, TEVC]
- Trigonometric-mutation DE (TDE) [Fan&Lampinen, 2003, JGO]
- Classic DE (CDE) [e.g. Storn&Price, 1997, JGO]
- Particle Swarm Optimizer (PSO) [e.g., Fornasier et al., 2021, JMLR; Bonyadi&Michalewicz, 2017, ECJ; Rahmat-Samii et al., 2012, PIEEE; Escalante et al., 2009, JMLR; Dorigo et al., 2008; Poli et al., 2007, SI; Shi&Eberhart, 1998, CEC; Kennedy&Eberhart, 1995, ICNN]
- Cooperative Coevolving PSO (CCPSO2) [Li&Yao, 2012, TEVC]
- Incremental PSO (IPSO) [de Oca et al., 2011, TSMCB]
- Cooperative PSO (CPSO) [Van den Bergh&Engelbrecht, 2004, TEVC]
- Comprehensive Learning PSO (CLPSO) [Liang et al., 2006, TEVC]
- Standard PSO with a Local (ring) topology (SPSOL) [e.g. Shi&Eberhart, 1998, CEC; Kennedy&Eberhart, 1995, ICNN]
- Standard PSO with a global topology (SPSO) [e.g. Shi&Eberhart, 1998, CEC; Kennedy&Eberhart, 1995, ICNN]
- Cooperative Co-evolution (CC) [e.g., Gomez et al., 2008, JMLR; Panait et al., 2008, JMLR; Moriarty&Miikkulainen, 1995, ICML; Potter&De Jong, 1994, PPSN]
- Hierarchical CC (HCC) [Mei et al., 2016, ACM-TOMS; Gomez&Schmidhuber, 2005, ACM-GECCO]
- CoOperative CMA (COCMA) [Mei et al., 2016, ACM-TOMS; Potter&De Jong, 1994, PPSN]
- CoOperative co-Evolutionary Algorithm (COEA) [e.g. Panait et al., 2008, JMLR; Potter&De Jong, 1994, PPSN]
- CoOperative SYnapse NeuroEvolution (COSYNE) [Gomez et al., 2008, JMLR; Moriarty&Miikkulainen, 1995, ICML]
- Simulated Annealing (SA) [e.g., Bertsimas&Tsitsiklis, 1993, Statistical Science; Kirkpatrick et al., 1983, Science; Hastings, 1970, Biometrika; Metropolis et al., 1953, JCP]
- Genetic Algorithms (GA) [e.g., Forrest, 1993, Science; Holland, 1973, SICOMP; Holland, 1962, JACM]
- Evolutionary Programming (EP) [e.g., Yao et al., 1999, TEVC; Fogel, 1994, Statistics and Computing]
- Direct Search (DS) [e.g. Powell, 1998, Acta-Numerica; Wright, 1996; Hooke&Jeeves, 1961, JACM]
- Powell's search method (POWELL) [SciPy; Powell, 1964, Computer]
- Generalized Pattern Search (GPS) [Kochenderfer&Wheeler, 2019; Torczon, 1997, SIAM-JO]
- Nelder-Mead simplex method (NM) [Dean et al., 1975, Science; Nelder&Mead, 1965, Computer]
- Hooke-Jeeves direct search method (HJ) [Kochenderfer&Wheeler, 2019; Kaupe, 1963, CACM; Hooke&Jeeves, 1961, JACM]
- Coordinate Search (CS) [Torczon, 1997, SIAM-JO; Fermi&Metropolis, 1952]
- Random (stochastic) Search (RS) [ e.g., Murphy, 2023; Gao&Sener, 2022, ICML; Russell&Norvig, 2021; Nesterov&Spokoiny, 2017, FoCM; Bergstra&Bengio, 2012, JMLR; Schmidhuber et al., 2001; Cvijović&Klinowski, 1995, Science; Rastrigin, 1986; Solis&Wets, 1981, MOOR; Brooks, 1958, OR; Ashby, 1952 ]
- BErnoulli Smoothing (BES) [Gao&Sener, 2022, ICML]
- Gaussian Smoothing (GS) [Nesterov&Spokoiny, 2017, FoCM]
- Simple Random Search (SRS) [Rosenstein&Barto, 2001, IJCAI]
- Annealed Random Hill Climber (ARHC) [e.g. Russell&Norvig, 2021; Schaul et al., 2010, JMLR]
- Random Hill Climber (RHC) [e.g. Russell&Norvig, 2021; Schaul et al., 2010, JMLR]
- Pure Random Search (PRS) [e.g. Bergstra&Bengio, 2012, JMLR; Schmidhuber et al., 2001; Brooks, 1958, OR]
Computational Efficiency
For LSO, computational efficiency is an indispensable performance criterion of BBO/DFO/ZOO in the post-Moore era. To obtain high-performance computation as much as possible, NumPy is heavily used in this library as the base of numerical computation along with SciPy. Sometimes Numba is also utilized, in order to further accelerate the wall-clock time.
Folder Structure
The main folder structure of this open-source library PyPop7 is presented below:
.circleci
: for automatic testing based on pytest.
config.yml
: configuration file in CircleCI.
.github
: all configuration files for GitHub.
docs
: for online documentations.pypop7
: all Python source code of BBO.tutorials
: a set of tutorials..gitignore
: for GitHub..readthedocs.yaml
: for readthedocs.CODE_OF_CONDUCT.md
: code of conduct.LICENSE
: open-source license.README.md
: basic information of this library.coverage-badge.svg
: coverage rate of testing, calculated via Coverage.py and generated via https://smarie.github.io/python-genbadge/
.pyproject.toml
: for PyPI.requirements.txt
: for development.setup.cfg
: for PyPI (used via pyproject.toml
).
References
For each algorithm family, we try to provide several representative applications published on some top-tier journals and conferences (such as, Nature, Science, PNAS, PRL, JACS, JACM, PIEEE, JMLR, ICML, NeurIPS, ICLR, CVPR, ICCV, etc.), systematically reported in the (actively maintained) paper list called DistributedEvolutionaryComputation openly accessible via GitHub.
- Derivative-Free Optimization (DFO) / Zeroth-Order Optimization (ZOO)
- Berahas, A.S., Cao, L., Choromanski, K. and Scheinberg, K., 2022. A theoretical and empirical comparison of gradient approximations in derivative-free optimization. FoCM, 22(2), pp.507-560.
- Porcelli, M. and Toint, P.L., 2022. Exploiting problem structure in derivative free optimization. ACM TOMS, 48(1), pp.1-25.
- Gao, K. and Sener, O., 2022, June. Generalizing Gaussian smoothing for random search. In ICML (pp. 7077-7101). PMLR.
- Kochenderfer, M.J. and Wheeler, T.A., 2019. Algorithms for optimization. MIT Press.
- Larson, J., Menickelly, M. and Wild, S.M., 2019. Derivative-free optimization methods. Acta Numerica, 28, pp.287-404.
- Nesterov, Y. and Spokoiny, V., 2017. Random gradient-free minimization of convex functions. FoCM, 17(2), pp.527-566.
- Conn, A.R., Scheinberg, K. and Vicente, L.N., 2009. Introduction to derivative-free optimization. SIAM.
- Evolutionary Computation (EC) and Swarm Intelligence (SI)
- Eiben, A.E. and Smith, J., 2015. From evolutionary computation to the evolution of things. Nature, 521(7553), pp.476-482. [ http://www.evolutionarycomputation.org/ ]
- Miikkulainen, R. and Forrest, S., 2021. A biological perspective on evolutionary computation. Nature Machine Intelligence, 3(1), pp.9-15.
- Hansen, N. and Auger, A., 2014. Principled design of continuous stochastic search: From theory to practice. Theory and Principled Methods for the Design of Metaheuristics, pp.145-180.
- De Jong, K.A., 2006. Evolutionary computation: A unified approach. MIT Press.
- Beyer, H.G. and Deb, K., 2001. On self-adaptive features in real-parameter evolutionary algorithms. TEVC, 5(3), pp.250-270.
- Salomon, R., 1998. Evolutionary algorithms and gradient search: Similarities and differences. TEVC, 2(2), pp.45-55.
- Fogel, D.B., 1998. Evolutionary computation: The fossil record. IEEE Press.
- Back, T., Fogel, D.B. and Michalewicz, Z. eds., 1997. Handbook of Evolutionary Computation. CRC Press.
- Wolpert, D.H. and Macready, W.G., 1997. No free lunch theorems for optimization. TEVC, 1(1), pp.67-82.
- Bäck, T. and Schwefel, H.P., 1993. An overview of evolutionary algorithms for parameter optimization. Evolutionary Computation, 1(1), pp.1-23.
- Forrest, S., 1993. Genetic algorithms: Principles of natural selection applied to computation. Science, 261(5123), pp.872-878.
- Taxonomy
- Benchmarking [ benchmarking-network + iohprofiler ]
- Andrés-Thió, N., Audet, C., et al., 2024. Solar: A solar thermal power plant simulator for blackbox optimization benchmarking. arXiv preprint arXiv:2406.00140.
- Kudela, J., 2022. A critical problem in benchmarking and analysis of evolutionary computation methods. Nature Machine Intelligence, 4(12), pp.1238-1245.
- Meunier, L., Rakotoarison, H., Wong, P.K., Roziere, B., Rapin, J., Teytaud, O., Moreau, A. and Doerr, C., 2022. Black-box optimization revisited: Improving algorithm selection wizards through massive benchmarking. TEVC, 26(3), pp.490-500.
- Hansen, N., Auger, A., Ros, R., Mersmann, O., Tušar, T. and Brockhoff, D., 2021. COCO: A platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software, 36(1), pp.114-144.
- Auger, A. and Hansen, N., 2021, July. Benchmarking: State-of-the-art and beyond. In Proceedings of Genetic and Evolutionary Computation Conference Companion (pp. 339-340). ACM.
- Varelas, K., El Hara, O.A., Brockhoff, D., Hansen, N., Nguyen, D.M., Tušar, T. and Auger, A., 2020. Benchmarking large-scale continuous optimizers: The bbob-largescale testbed, a COCO software guide and beyond. Applied Soft Computing, 97, p.106737.
- Hansen, N., Ros, R., Mauny, N., Schoenauer, M. and Auger, A., 2011. Impacts of invariance in search: When CMA-ES and PSO face ill-conditioned and non-separable problems. Applied Soft Computing, 11(8), pp.5755-5769.
- Moré, J.J. and Wild, S.M., 2009. Benchmarking derivative-free optimization algorithms. SIOPT, 20(1), pp.172-191.
- Whitley, D., Rana, S., Dzubera, J. and Mathias, K.E., 1996. Evaluating evolutionary algorithms. Artificial Intelligence, 85(1-2), pp.245-276.
- Salomon, R., 1996. Re-evaluating genetic algorithm performance under coordinate rotation of benchmark functions. A survey of some theoretical and practical aspects of genetic algorithms. BioSystems, 39(3), pp.263-278.
- Fogel, D.B. and Beyer, H.G., 1995. A note on the empirical evaluation of intermediate recombination. Evolutionary Computation, 3(4), pp.491-495.
- Moré, J.J., Garbow, B.S. and Hillstrom, K.E., 1981. Testing unconstrained optimization software. ACM Transactions on Mathematical Software, 7(1), pp.17-41.
- Evolution Strategy (ES) [ A visual guide to ES + [Li et al., 2020] + [Akimoto&Hansen, 2022, GECCO-Companion] ]
- Akimoto, Y., Auger, A., Glasmachers, T. and Morinaga, D., 2022. Global linear convergence of evolution strategies on more than smooth strongly convex functions. SIOPT, 32(2), pp.1402-1429.
- Glasmachers, T. and Krause, O., 2022. Convergence analysis of the Hessian estimation evolution strategy. ECJ, 30(1), pp.27-50.
- He, X., Zheng, Z. and Zhou, Y., 2021. MMES: Mixture model-based evolution strategy for large-scale optimization. TEVC, 25(2), pp.320-333.
- Akimoto, Y. and Hansen, N., 2020. Diagonal acceleration for covariance matrix adaptation evolution strategies. ECJ, 28(3), pp.405-435.
- Beyer, H.G., 2020, July. Design principles for matrix adaptation evolution strategies. In GECCO Companion (pp. 682-700). ACM.
- Choromanski, K., Pacchiano, A., Parker-Holder, J. and Tang, Y., 2019. From complexity to simplicity: Adaptive es-active subspaces for blackbox optimization. In NeurIPS.
- Varelas, K., Auger, A., Brockhoff, D., Hansen, N., ElHara, O.A., Semet, Y., Kassab, R. and Barbaresco, F., 2018, September. A comparative study of large-scale variants of CMA-ES. In PPSN (pp. 3-15). Springer, Cham.
- Li, Z. and Zhang, Q., 2018. A simple yet efficient evolution strategy for large-scale black-box optimization. TEVC, 22(5), pp.637-646.
- Lehman, J., Chen, J., Clune, J. and Stanley, K.O., 2018, July. ES is more than just a traditional finite-difference approximator. In GECCO (pp. 450-457). ACM.
- Ollivier, Y., Arnold, L., Auger, A. and Hansen, N., 2017. Information-geometric optimization algorithms: A unifying picture via invariance principles. JMLR, 18(18), pp.1-65.
- Loshchilov, I., 2017. LM-CMA: An alternative to L-BFGS for large-scale black box optimization. ECJ, 25(1), pp.143-171. [ Loshchilov, I., 2014, July. A computationally efficient limited memory CMA-ES for large scale optimization. In GECCO (pp. 397-404). ACM. ] + [ Loshchilov, I., Glasmachers, T. and Beyer, H.G., 2019. Large scale black-box optimization by limited-memory matrix adaptation. TEVC, 23(2), pp.353-358. ]
- Beyer, H.G. and Sendhoff, B., 2017. Simplify your covariance matrix adaptation evolution strategy. TEVC, 21(5), pp.746-759.
- Krause, O., Arbonès, D.R. and Igel, C., 2016. CMA-ES with optimal covariance update and storage complexity. In NeurIPS, 29, pp.370-378.
- Akimoto, Y. and Hansen, N., 2016, July. Projection-based restricted covariance matrix adaptation for high dimension. In GECCO (pp. 197-204). ACM.
- Auger, A. and Hansen, N., 2016. Linear convergence of comparison-based step-size adaptive randomized search via stability of Markov chains. SIOPT, 26(3), pp.1589-1624.
- Hansen, N., Arnold, D.V. and Auger, A., 2015. Evolution strategies. In Springer Handbook of Computational Intelligence (pp. 871-898). Springer, Berlin, Heidelberg.
- Diouane, Y., Gratton, S. and Vicente, L.N., 2015. Globally convergent evolution strategies. Mathematical Programming, 152(1), pp.467-490.
- Akimoto, Y., Auger, A. and Hansen, N., 2014, July. Comparison-based natural gradient optimization in high dimension. In GECCO (pp. 373-380). ACM.
- Bäck, T., Foussette, C. and Krause, P., 2013. Contemporary evolution strategies. Berlin: Springer. [ Bäck, T., 2014, July. Introduction to evolution strategies. In GECCO Companion (pp. 251-280). ] + [ Wang, H., Emmerich, M. and Bäck, T., 2014, March. Mirrored orthogonal sampling with pairwise selection in evolution strategies. In Proceedings of Annual ACM Symposium on Applied Computing (pp. 154-156). ]
- Rudolph, G., 2012. Evolutionary strategies. In Handbook of Natural Computing (pp. 673-698). Springer Berlin, Heidelberg.
- Akimoto, Y., Nagata, Y., Ono, I. and Kobayashi, S., 2012. Theoretical foundation for CMA-ES from information geometry perspective. Algorithmica, 64(4), pp.698-716. [ Akimoto, Y., Nagata, Y., Ono, I. and Kobayashi, S., 2010, September. Bidirectional relation between CMA evolution strategies and natural evolution strategies. In PPSN (pp. 154-163). Springer, Berlin, Heidelberg. ] + [ Akimoto, Y., 2011. Design of evolutionary computation for continuous optimization. Doctoral Dissertation, Tokyo Institute of Technology. ]
- Arnold, D.V. and Hansen, N., 2010, July. Active covariance matrix adaptation for the (1+1)-CMA-ES. In GECCO (pp. 385-392). ACM.
- Arnold, D.V. and MacLeod, A., 2006, July. Hierarchically organised evolution strategies on the parabolic ridge. In GECCO (pp. 437-444). ACM.
- Igel, C., Suttorp, T. and Hansen, N., 2006, July. A computational efficient covariance matrix update and a (1+1)-CMA for evolution strategies. In GECCO (pp. 453-460). ACM. [ Suttorp, T., Hansen, N. and Igel, C., 2009. Efficient covariance matrix update for variable metric evolution strategies. MLJ, 75(2), pp.167-197. ] + [ Krause, O. and Igel, C., 2015, January. A more efficient rank-one covariance matrix update for evolution strategies. In FOGA (pp. 129-136). ACM. ]
- Beyer, H.G. and Schwefel, H.P., 2002. Evolution strategies–A comprehensive introduction. Natural Computing, 1(1), pp.3-52.
- Hansen, N. and Ostermeier, A., 1996, May. Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaptation. In CEC (pp. 312-317). IEEE. [ Hansen, N. and Ostermeier, A., 2001. Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation, 9(2), pp.159-195. ] + [ Hansen, N., Müller, S.D. and Koumoutsakos, P., 2003. Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). ECJ, 11(1), pp.1-18. ] + [ Auger, A. and Hansen, N., 2005, September. A restart CMA evolution strategy with increasing population size. In CEC (pp. 1769-1776). IEEE. ] + [ Hansen, N. and Auger, A., 2014. Principled design of continuous stochastic search: From theory to practice. In Theory and Principled Methods for the Design of Metaheuristics (pp. 145-180). Springer, Berlin, Heidelberg. ]
- Rudolph, G., 1992. On correlated mutations in evolution strategies. In PPSN (pp. 105-114).
- Schwefel, H.P., 1984. Evolution strategies: A family of non-linear optimization techniques based on imitating some principles of organic evolution. Annals of Operations Research, 1(2), pp.165-167. [ Schwefel, H.P., 1988. Collective intelligence in evolving systems. In Ecodynamics (pp. 95-100). Springer, Berlin, Heidelberg. ]
- Rechenberg, I., 1984. The evolution strategy. A mathematical model of darwinian evolution. In Synergetics—from Microscopic to Macroscopic Order (pp. 122-132). Springer, Berlin, Heidelberg. [ Rechenberg, I., 1989. Evolution strategy: Nature’s way of optimization. In Optimization: Methods and Applications, Possibilities and Limitations (pp. 106-126). Springer, Berlin, Heidelberg. ]
- Applications: e.g., Deng et al., 2023; Zhang et al., 2023, NeurIPS; Tjanaka et al., 2023, IEEE-LRA; Yu et al., 2023, IJCAI; Zhu et al., 2023, IEEE/ASME-TMECH; Fadini et al., 2023; Ma et al., 2023; Kim et al., 2023, Science Robotics; Slade et al., 2022, Nature; Sun et al., 2022, ICML; Tjanaka et al., 2022, GECCO; Wang&Ponce, 2022, GECCO, Tian&Ha, 2022, EvoStar; Hansel et al., 2021; Anand et al., 2021, MLST; Nomura et al., 2021, AAAI; Zheng et al., 2021, IEEE-ASRU; Liu et al., 2019, AAAI; Dong et al., 2019, CVPR; Ha&Schmidhuber, 2018, NeurIPS; Müller&Glasmachers, 2018, PPSN; Chrabąszcz et al., 2018, IJCAI; OpenAI, 2017; Zhang et al., 2017, Science.
- Natural Evolution Strategies (NES)
- Wierstra, D., Schaul, T., Glasmachers, T., Sun, Y., Peters, J. and Schmidhuber, J., 2014. Natural evolution strategies. JMLR, 15(1), pp.949-980.
- Schaul, T., 2011. Studies in continuous black-box optimization. Doctoral Dissertation, Technische Universität München.
- Yi, S., Wierstra, D., Schaul, T. and Schmidhuber, J., 2009, June. Stochastic search using the natural gradient. In Proceedings of International Conference on Machine Learning (pp. 1161-1168).
- Wierstra, D., Schaul, T., Peters, J. and Schmidhuber, J., 2008, June. Natural evolution strategies. In IEEE Congress on Evolutionary Computation (pp. 3381-3387). IEEE.
- Applications: e.g., Yu et al., USENIX Security; Flageat et al., 2023; Yan et al., 2023; Feng et al., 2023; Wei et al., 2022, IJCV; Agarwal et al., 2022, ICRA; Farid et al., 2022, CoRL; Feng et al., 2022, CVPR; Berliner et al., 2022, ICLR; Kirsch et al., 2022, AAAI; Jain et al., 2022, USENIX Security; Ilyas et al., 2018, ICML.
- Estimation of Distribution Algorithm (EDA) [ MIMIC [NeurIPS-1996] + BOA [GECCO-1999] + [ECJ-2005] ]
- Brookes, D., Busia, A., Fannjiang, C., Murphy, K. and Listgarten, J., 2020, July. A view of estimation of distribution algorithms through the lens of expectation-maximization. In Proceedings of Genetic and Evolutionary Computation Conference Companion (pp. 189-190). ACM.
- Kabán, A., Bootkrajang, J. and Durrant, R.J., 2016. Toward large-scale continuous EDA: A random matrix theory perspective. Evolutionary Computation, 24(2), pp.255-291.
- Pelikan, M., Hauschild, M.W. and Lobo, F.G., 2015. Estimation of distribution algorithms. In Springer Handbook of Computational Intelligence (pp. 899-928). Springer, Berlin, Heidelberg.
- Dong, W., Chen, T., Tiňo, P. and Yao, X., 2013. Scaling up estimation of distribution algorithms for continuous optimization. TEVC, 17(6), pp.797-822.
- Hauschild, M. and Pelikan, M., 2011. An introduction and survey of estimation of distribution algorithms. Swarm and Evolutionary Computation, 1(3), pp.111-128.
- Teytaud, F. and Teytaud, O., 2009, July. Why one must use reweighting in estimation of distribution algorithms. In Proceedings of ACM Annual Conference on Genetic and Evolutionary Computation (pp. 453-460).
- Larrañaga, P. and Lozano, J.A. eds., 2001. Estimation of distribution algorithms: A new tool for evolutionary computation. Springer Science & Business Media.
- Mühlenbein, H., 1997. The equation for response to selection and its use for prediction. Evolutionary Computation, 5(3), pp.303-346.
- Baluja, S. and Caruana, R., 1995. Removing the genetics from the standard genetic algorithm. In International Conference on Machine Learning (pp. 38-46). Morgan Kaufmann.
- Cross-Entropy Method (CEM)
- Pinneri, C., Sawant, S., Blaes, S., Achterhold, J., Stueckler, J., Rolinek, M. and Martius, G., 2021, October. Sample-efficient cross-entropy method for real-time planning. In Conference on Robot Learning (pp. 1049-1065). PMLR.
- Amos, B. and Yarats, D., 2020, November. The differentiable cross-entropy method. In International Conference on Machine Learning (pp. 291-302). PMLR.
- Rubinstein, R.Y. and Kroese, D.P., 2016. Simulation and the Monte Carlo method (Third Edition). John Wiley & Sons.
- Hu, J., Fu, M.C. and Marcus, S.I., 2007. A model reference adaptive search method for global optimization. Operations Research, 55(3), pp.549-568.
- De Boer, P.T., Kroese, D.P., Mannor, S. and Rubinstein, R.Y., 2005. A tutorial on the cross-entropy method. Annals of Operations Research, 134(1), pp.19-67.
- Rubinstein, R.Y. and Kroese, D.P., 2004. The cross-entropy method: A unified approach to combinatorial optimization, Monte-Carlo simulation, and machine learning. New York: Springer.
- Mannor, S., Rubinstein, R.Y. and Gat, Y., 2003. The cross entropy method for fast policy search. In Proceedings of International Conference on Machine Learning (pp. 512-519).
- Applications: e.g., Wang&Ba,2020, ICLR; Hafner et al., 2019, ICML; Pourchot&Sigaud, 2019, ICLR; Simmons-Edler et al., 2019, ICML-RL4RealLife; Chua et al., 2018, NeurIPS; Duan et al., 2016, ICML; Kobilarov, 2012, IJRR.
- Differential Evolution (DE)
- Price, K.V., 2013. Differential evolution. In Handbook of Optimization (pp. 187-214). Springer, Berlin, Heidelberg.
- Tanabe, R. and Fukunaga, A., 2013, June. Success-history based parameter adaptation for differential evolution. In IEEE Congress on Evolutionary Computation (pp. 71-78). IEEE.
- Wang, Y., Cai, Z., and Zhang, Q. 2011. Differential evolution with composite trial vector generation strategies and control parameters. TEVC, 15(1), pp.55–66.
- Zhang, J., and Sanderson, A. C. 2009. JADE: Adaptive differential evolution with optional external archive. TEVC, 13(5), pp.945–958.
- Price, K.V., Storn, R.M. and Lampinen, J.A., 2005. Differential evolution: A practical approach to global optimization. Springer Science & Business Media.
- Fan, H.Y. and Lampinen, J., 2003. A trigonometric mutation operation to differential evolution. JGO, 27(1), pp.105-129.
- Storn, R.M. and Price, K.V. 1997. Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. JGO, 11(4), pp.341–359.
- Applications: e.g., Higgins et al., 2023, Science; McNulty et al., 2023, PRL; Koob et al., 2023, Psychological Review; Colombo et al., 2023, Sci. Adv.; Lichtinger&Biggin, 2023, JCTC; Liang et al., 2023, NSDI; Shinn et al., 2023, Nature Neuroscience; Schad et al., 2023, ApJ; Hoyer et al., 2023, MNRAS; Hoyer et al., 2023, ApJL; Abdelnabi&Fritz, 2023,USENIX Security; Kotov et al., 2023, Cell Reports; Sidhartha et al., 2023, CVPR; Hardy et al., 2023, MNRAS; Boucher et al., 2023; Michel et al., 2023, PRA; Woo et al., 2023, iScience; Bozkurt et al., 2023; Ma et al., 2023, KDD; Zhou et al., 2023; Czarnik et al., 2023; Katic et al., 2023, iScience; Khajehnejad et al., 2023, RSIF; Digman&Cornish, 2023, PRD; Rommel et al., 2023; Li et al., 2022, Science; Schlegelmilch et al., 2022, Psychological Review; Mackin et al., 2022, Nature Communications; Liu&Wang, 2022, JSAC; Zhou et al., 2022, Nature Computational Science; Fischer et al., 2022, TOCHI; Ido et al., 2022, npj Quantum Materials; Clark et al., 2022, NECO; Powell et al., 2022, ApJ; Vo et al., 2022, ICLR; Andersson et al., 2022, ApJ; Naudin et al., 2022, NECO; Perini et al., 2022, AAAI; Sterbentz et al., 2022, Physics of Fluids; Mishra et al., 2021, Science; Tiwari et al., 2021, PRB; Mok et al., 2021, Communications Physics; Vinker et al., 2021, CVPR; Mehta et al., 2021, JCAP; Trueblood et al., 2021, Psychological Review; Verdonck et al., 2021, Psychological Review; Robert et al., 2021, npj Quantum Information; Canton et al., 2021, ApJ; Leslie et al., 2021, PRD; Fengler et al., 2021, eLife; Li et al., 2021, TQE; Chen et al., 2021, ACS Photonics; Menczel et al., 2021, J. Phys. A: Math. Theor.; Feng et al., 2021, JSAC; DES Collaboration, 2021, A&A; An et al., 2020, PNAS; Su et al., 2019, TEVC; Laganowsky et al., 2014, Nature.
- Particle Swarm Optimizer (PSO) [ swarm intelligence | scholarpedia ]
- Sünnen, P., 2023. Analysis of a consensus-based optimization method on hypersurfaces and applications. Doctoral dissertation, Technische Universität München.
- Fornasier, M., Huang, H., Pareschi, L. and Sünnen, P., 2021. Consensus-based optimization on the sphere: Convergence to global minimizers and machine learning. JMLR, 22(1), pp.10722-10776.
- Carrillo, J.A., Choi, Y.P., Totzeck, C. and Tse, O., 2018. An analytical framework for consensus-based global optimization method. Mathematical Models and Methods in Applied Sciences, 28(06), pp.1037-1066.
- Blackwell, T. and Kennedy, J., 2018. Impact of communication topology in particle swarm optimization. TEVC, 23(4), pp.689-702.
- Pinnau, R., Totzeck, C., Tse, O. and Martin, S., 2017. A consensus-based model for global optimization and its mean-field limit. Mathematical Models and Methods in Applied Sciences, 27(01), pp.183-204.
- Bonyadi, M.R. and Michalewicz, Z., 2017. Particle swarm optimization for single objective continuous space problems: A review. Evolutionary Computation, 25(1), pp.1-54.
- Escalante, H.J., Montes, M. and Sucar, L.E., 2009. Particle swarm model selection. JMLR, 10(15), pp.405−440.
- Floreano, D. and Mattiussi, C., 2008. Bio-inspired artificial intelligence: Theories, methods, and technologies. MIT Press.
- Poli, R., Kennedy, J. and Blackwell, T., 2007. Particle swarm optimization. Swarm Intelligence, 1(1), pp.33-57.
- Venter, G. and Sobieszczanski-Sobieski, J., 2003. Particle swarm optimization. AIAA Journal, 41(8), pp.1583-1589.
- Parsopoulos, K.E. and Vrahatis, M.N., 2002. Recent approaches to global optimization problems through particle swarm optimization. Natural Computing, 1(2), pp.235-306.
- Clerc, M. and Kennedy, J., 2002. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. TEVC, 6(1), pp.58-73.
- Eberhart, R.C., Shi, Y. and Kennedy, J., 2001. Swarm intelligence. Elsevier.
- Shi, Y. and Eberhart, R., 1998, May. A modified particle swarm optimizer. In IEEE World Congress on Computational Intelligence (pp. 69-73). IEEE.
- Kennedy, J. and Eberhart, R., 1995, November. Particle swarm optimization. In Proceedings of International Conference on Neural Networks (pp. 1942-1948). IEEE.
- Eberhart, R. and Kennedy, J., 1995, October. A new optimizer using particle swarm theory. In Proceedings of International Symposium on Micro Machine and Human Science (pp. 39-43). IEEE.
- Interest Applications: e.g., Melis et al., 2024, Nature; Grabner et al., 2023, Nature Communications; Morselli et al., 2023, IEEE-TWC; Reddy et al., 2023, IEEE-TC; Zhang et al., 2022, CVPR; Yang et al., PRL, 2022; Guan et al., 2022, PRL; Zhong et al., 2022, CVPR; Singh&Hecke, 2021, PRL; Weiel, et al., 2021, Nature Mach. Intell; Wintermantel et al., 2020, PRL; Tang et al., 2019, TPAMI; Sheng et al., 2019, TPAMI; CMS Collaboration, 2019, JHEP; Wang et al., 2019, TVCG; Zhang et al., 2018, PRL; Leditzky et al., 2018, PRL; Pham et al., 2018, TPAMI; Villeneuve et al., 2017, Science; Choi et al., 2017, PRL; González-Echevarría, et al., 2017, TCAD; Zhu et al., 2017, PRL; Choi et al., 2017, ICCV; Pickup et al., 2016, IJCV; Li et al., 2015, PRL; Sharp et al., 2015, CHI; Taneja et al., 2015, TPAMI; Zhang et al., 2015, IJCV; Meyer et al., 2015, ICCV; Tompson et al., 2014, TOG; Baca et al., 2013, Cell; Li et al., PRL, 2013; Kawakami et al., 2013, IJCV; Kim et al., 2012, Nature; Rahmat-Samii et al., 2012, PIEEE; Oikonomidis et al., 2012, CVPR; Li et al., 2011, TPAMI; Zhao et al., 2011, PRL; Zhu et al., 2011, PRL; Lv et al., 2011, PRL; Hentschel&Sanders, 2010, PRL; Pontani&Conway, 2010, JGCD; Zhang et al., 2008, CVPR; Liebelt&Schertler, 2007, CVPR; Hassan et al., 2005, AIAA].
- Cooperative Coevolution (CC)
- Gomez, F., Schmidhuber, J. and Miikkulainen, R., 2008. Accelerated neural evolution through cooperatively coevolved synapses. JMLR, 9(31), pp.937-965.
- Panait, L., Tuyls, K. and Luke, S., 2008. Theoretical advantages of lenient learners: An evolutionary game theoretic perspective. JMLR, 9, pp.423-457.
- Schmidhuber, J., Wierstra, D., Gagliolo, M. and Gomez, F., 2007. Training recurrent networks by evolino. Neural Computation, 19(3), pp.757-779.
- Gomez, F.J. and Schmidhuber, J., 2005, June. Co-evolving recurrent neurons learn deep memory POMDPs. In Proceedings of Annual Conference on Genetic and Evolutionary Computation (pp. 491-498).
- Fan, J., Lau, R. and Miikkulainen, R., 2003. Utilizing domain knowledge in neuroevolution. In International Conference on Machine Learning (pp. 170-177).
- Potter, M.A. and De Jong, K.A., 2000. Cooperative coevolution: An architecture for evolving coadapted subcomponents. Evolutionary Computation, 8(1), pp.1-29.
- Gomez, F.J. and Miikkulainen, R., 1999, July. Solving non-Markovian control tasks with neuroevolution. In Proceedings of International Joint Conference on Artificial Intelligence (pp. 1356-1361).
- Moriarty, D.E. and Mikkulainen, R., 1996. Efficient reinforcement learning through symbiotic evolution. Machine Learning, 22(1), pp.11-32.
- Moriarty, D.E. and Miikkulainen, R., 1995. Efficient learning from delayed rewards through symbiotic evolution. In International Conference on Machine Learning (pp. 396-404). Morgan Kaufmann.
- Potter, M.A. and De Jong, K.A., 1994, October. A cooperative coevolutionary approach to function optimization. In International Conference on Parallel Problem Solving from Nature (pp. 249-257). Springer, Berlin, Heidelberg.
- Simultaneous Perturbation Stochastic Approximation (SPSA) [ https://www.jhuapl.edu/SPSA/ ]
- Spall, J.C., 2005. Introduction to stochastic search and optimization: Estimation, simulation, and control. John Wiley & Sons.
- Simulated Annealing (SA)
- Bouttier, C. and Gavra, I., 2019. Convergence rate of a simulated annealing algorithm with noisy observations. JMLR, 20(1), pp.127-171.
- Gerber, M. and Bornn, L., 2017. Improving simulated annealing through derandomization. JGO, 68(1), pp.189-217.
- Siarry, P., Berthiau, G., Durdin, F. and Haussy, J., 1997. Enhanced simulated annealing for globally minimizing functions of many-continuous variables. ACM Transactions on Mathematical Software, 23(2), pp.209-228.
- Bertsimas, D. and Tsitsiklis, J., 1993. Simulated annealing. Statistical Science, 8(1), pp.10-15.
- Corana, A., Marchesi, M., Martini, C. and Ridella, S., 1987. Minimizing multimodal functions of continuous variables with the “simulated annealing” algorithm. ACM Transactions on Mathematical Software, 13(3), pp.262-280. [ Corrigenda ]
- Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P., 1983. Optimization by simulated annealing. Science, 220(4598), pp.671-680.
- Hastings, W.K., 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1), pp.97-109.
- Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. and Teller, E., 1953. Equation of state calculations by fast computing machines. Journal of Chemical Physics, 21(6), pp.1087-1092.
- Applications: e.g., Young et al., 2023, Nature; Kim et al., 2023, Nature; Passalacqua et al., 2023, Nature; Pronker et al., 2023, Nature; Sullivan&Seljak, 2023; Holm et al., 2023, Nature; Snyder et al., 2023, Nature; Samyak&Palacios, 2023, Biometrika; Bouchet et al., 2023, PNAS; Li&Yu, 2023, ACM-TOG; Zhao et al., 2023, VLDBJ; Zhong et al., 2023, IEEE/ACM-TASLP; Wang et al., 2023, IEEE-TMC; Filippo et al., 2023, IJCAI; Barnes et al., 2023, ApJ; Melo et al., 2023; Bruna et al., 2023; Holm et al., 2023; Jenson et al., 2023, Nature; Kolesov et al., 2016, IEEE-TPAMI
- Genetic Algorithm (GA)
- Whitley, D., 2019. Next generation genetic algorithms: A user’s guide and tutorial. In Handbook of Metaheuristics (pp. 245-274). Springer, Cham.
- Levine, D., 1997. Commentary—Genetic algorithms: A practitioner's view. INFORMS Journal on Computing, 9(3), pp.256-259.
- Goldberg, D.E., 1994. Genetic and evolutionary algorithms come of age. Communications of the ACM, 37(3), pp.113-120.
- Forrest, S., 1993. Genetic algorithms: Principles of natural selection applied to computation. Science, 261(5123), pp.872-878.
- De Jong, K.A., 1993. Are genetic algorithms function optimizer?. Foundations of Genetic Algorithms, pp.5-17.
- Mitchell, M., Holland, J. and Forrest, S., 1993. When will a genetic algorithm outperform hill climbing. Advances in Neural Information Processing Systems (pp. 51-58).
- Holland, J.H., 1992. Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. MIT Press.
- Holland, J.H., 1992. Genetic algorithms. Scientific American, 267(1), pp.66-73.
- Whitley, D., 1989, December. The GENITOR algorithm and selection pressure: Why rank-based allocation of reproductive trials is best. In Proceedings of International Conference on Genetic Algorithms (pp. 116-121).
- Goldberg, D.E. and Holland, J.H., 1988. Genetic algorithms and machine learning. Machine Learning, 3(2), pp.95-99.
- Holland, J.H., 1973. Genetic algorithms and the optimal allocation of trials. SIAM Journal on Computing, 2(2), pp.88-105.
- Holland, J.H., 1962. Outline for a logical theory of adaptive systems. Journal of the ACM, 9(3), pp.297-314.
- Applications: e.g., Wang, 2023, Harvard Ph.D. Dissertation; Lee et al., 2022, Science Robotics; Whitelam&Tamblyn, 2021, PRL; Walker et al., 2021, Nature Chemistry; Chen et al., 2020, Nature; Whitley et al., 1993, MLJ.
- Evolutionary Programming (EP)
- Yao, X., Liu, Y. and Lin, G., 1999. Evolutionary programming made faster. TEVC, 3(2), pp.82-102.
- Fogel, D.B., 1999. An overview of evolutionary programming. In Evolutionary Algorithms (pp. 89-109). Springer, New York, NY.
- Fogel, D.B. and Fogel, L.J., 1995, September. An introduction to evolutionary programming. In European Conference on Artificial Evolution (pp. 21-33). Springer, Berlin, Heidelberg.
- Fogel, D.B., 1994. Evolutionary programming: An introduction and some current directions. Statistics and Computing, 4(2), pp.113-129.
- Bäck, T. and Schwefel, H.P., 1993. An overview of evolutionary algorithms for parameter optimization. Evolutionary Computation, 1(1), pp.1-23.
- Applications: e.g., Hoorfar, 2007, IEEE-TAP; Cui et al., 2006, MS; Damavandi&Safavi-Naeini, 2005, IEEE-TCSI.
- Pattern Search
- Audet, C., Le Digabel, S., Rochon Montplaisir, V. and Tribes, C., 2022. Algorithm XXXX: NOMAD version 4: Nonlinear optimization with the MADS algorithm. ACM Transactions on Mathematical Software.
- Brent, R.P., 2013. Algorithms for minimization without derivatives. Courier Corporation.
- Singer, S. and Nelder, J., 2009. Nelder-mead algorithm. Scholarpedia, 4(7), p.2928.
- Kolda, T.G., Lewis, R.M. and Torczon, V., 2003. Optimization by direct search: New perspectives on some classical and modern methods. SIAM Review, 45(3), pp.385-482.
- Lagarias, J.C., Reeds, J.A., Wright, M.H. and Wright, P.E., 1998. Convergence properties of the Nelder--Mead simplex method in low dimensions. SIOPT, 9(1), pp.112-147.
- Powell, M.J., 1998. Direct search algorithms for optimization calculations. Acta Numerica, 7, pp.287-336.
- Torczon, V., 1997. On the convergence of pattern search algorithms. SIOPT, 7(1), pp.1-25.
- Barton, R.R. and Ivey Jr, J.S., 1996. Nelder-Mead simplex modifications for simulation optimization. Management Science, 42(7), pp.954-973.
- Wright, M.H., 1996. Direct search methods: Once scorned, now respectable. Pitman Research Notes in Mathematics Series, pp.191-208.
- Jones, D.R., Perttunen, C.D. and Stuckman, B.E., 1993. Lipschitzian optimization without the Lipschitz constant. Journal of Optimization Theory and Applications, 79(1), pp.157-181.
- Nelder, J.A. and Mead, R., 1965. A simplex method for function minimization. The Computer Journal, 7(4), pp.308-313.
- Powell, M.J., 1964. An efficient method for finding the minimum of a function of several variables without calculating derivatives. The Computer Journal, 7(2), pp.155-162.
- Kaupe Jr, A.F., 1963. Algorithm 178: Direct search. Communications of the ACM, 6(6), pp.313-314.
- Spang, III, H.A., 1962. A review of minimization techniques for nonlinear functions. SIAM Review, 4(4), pp.343-365.
- Hooke, R. and Jeeves, T.A., 1961. “Direct search” solution of numerical and statistical problems. Journal of the ACM, 8(2), pp.212-229. [ Python - pymoo | This Week's Citation Classic ]
- Box, G.E., 1957. Evolutionary operation: A method for increasing industrial productivity. Journal of the Royal Statistical Society: Series C (Applied Statistics), 6(2), pp.81-101.
- Fermi, E. and Metropolis N., 1952. Numerical solution of a minimum problem. Technical Report, Los Alamos Scientific Lab.
- Applications: e.g., [NM: Gokhale et al., 2023, PNAS; Hayashi, 2022, Bernoulli; Vanunu et al., 2021, PNAS; Williams et al., 2021, PNAS; Fleishman et al., Science, 2020; Nanni et al., 2020, PNAS; Steinrücken et al., 2019, PNAS; Omran et al., 2019, Science; Sparrow et al., 2018, Nature; Prochazka&Vogl, 2017, PNAS; Murphy&Brincke, 2017, MS; Gillon et al., 2017, Nature; Aghaeepour et al., 2017, Science Immunol.; Sayegh et al., 2017, TS; Landis&Schraiber, 2017, PNAS; Kim et al., 2016, PNAS; Chan et al., 2014, MS; Chan et al., 2014, MKSC; Bajikar et al., 2014, PNAS; Lee et al., 2014, PNAS; Wang et al., 2012, PRL; Lau&Rubinstein, Nature, 2012; Brown et al., 2012, MS; Contreras et al., 2012, PNAS; Morlon et al., 2011, PNAS; Forstmann et al., 2010, PNAS; Balachander et al., 2009, MS; Jayanthi et al., 2009, MS; Farrell et al., 2009, PNAS; Forstmann et al., 2008, PNAS; Rouder et al., 2008, PNAS; Sapir et al., 2005, PNAS; Amonlirdviman et al., 2005, Science; Cowan et al., 2004, PS; Zhou et al., 2004, PS; Draganska&Jain, 2004, MS; Fain&Levitt, 2003, PNAS; Dennis et al., 2002, PNAS; Sudhir, 2001, MKSC; Rouder, 2001, PS; Wolszczan, 1994, Science; Polvani et al., 1990, Science; Lee et al., 1987, PNAS; Sabath et al., 1986, PNAS; Burch et al., 1985, PNAS; Regoeczi et al., 1982, PNAS; Brasseur et al., 1982, PNAS; Korn et al., 1981, Science; Dean et al., 1975, Science]; [HJ: Kalita et al., 2023, Nature; Washington et al, 2023; Huynh et al., 2023; Kucher et al., 2022, SPLC; Pepe et al., 2021, IEEE-TASLP; Khaledian et al., 2018, IEEE-TMTT; Luhar et al., 2015, JFM; Paxton et al., 2013, ApJS; Schneider&Excoffier, 1999, Genetics; Ditchfield et al., 1971, JCP].
- Random Search (RS)
- Stich, S.U., 2014. On low complexity acceleration techniques for randomized optimization. In PPSN (pp. 130-140). Springer.
- Bergstra, J. and Bengio, Y., 2012. Random search for hyper-parameter optimization. JMLR, 13(2).
- Nemirovski, A., Juditsky, A., Lan, G. and Shapiro, A., 2009. Robust stochastic approximation approach to stochastic programming. SIOPT, 19(4), pp.1574-1609.
- Schmidhuber, J., Hochreiter, S. and Bengio, Y., 2001. Evaluating benchmark problems by random guessing. A Field Guide to Dynamical Recurrent Networks, pp.231-235.
- Rosenstein, M.T. and Barto, A.G., 2001, August. Robot weightlifting by direct policy search. In International Joint Conference on Artificial Intelligence (pp. 839-846).
- Cvijović, D. and Klinowski, J., 1995. Taboo search: An approach to the multiple minima problem. Science, 267(5198), pp.664-666.
- Polyak, B.T., 1987. Introduction to optimization. Optimization Software. New York.
- Dorea, C.C.Y., 1983. Expected number of steps of a random optimization method. Journal of Optimization Theory and Applications, 39(2), pp.165-171. [ Sarma, M.S., 1990. On the convergence of the Baba and Dorea random optimization methods. Journal of Optimization Theory and Applications, 66, pp.337-343. ] + [ Appel, M.J., Labarre, R. and Radulovic, D., 2004. On accelerated random search. SIOPT, 14(3), pp.708-731. ]
- Solis, F.J. and Wets, R.J.B., 1981. Minimization by random search techniques. MOR, 6(1), pp.19-30.
- Schumer, M.A. and Steiglitz, K., 1968. Adaptive step size random search. TAC, 13(3), pp.270-276.
- Rastrigin, L.A., 1963. The convergence of the random search method in the extremal control of a many parameter system. Automaton & Remote Control, 24, pp.1337-1342. [ Rastrigin, L.A., 1986. Random search as a method for optimization and adaptation. In Stochastic Optimization. ]
- Brooks, S.H., 1958. A discussion of random methods for seeking maxima. OR, 6(2), pp.244-251.
- Some interesting applications of RS: e.g., [Moon et al., 2023, Nature Medicine]; [Wang et al., 2023, Nature Mental Health]; [Xie et al., 2023, Nature Communications]; [Mathis et al., 2023, Nature Biotechnology]; [Tian et al., 2023, KDD]; [Schuch et al., 2023, JAMA]; [Flam-Shepherd et al., 2022, Nature Communications]; [Beucler et al., 2021, PRL]; [Roman et al., 2021, Nature Machine Intelligence]; [Shen et al., 2021, Nature Communications]; [Gonatopoulos-Pournatzis et al., 2020, Nature Biotechnology]; [Valeri et al., 2020, Nature Communications]; [Chen et al., 2020, Science Robotics]; [Pickard&Needs, 2006, PRL].
- Bayesian Optimization (BO)
- https://bayesoptbook.com/ + https://bayesopt-tutorial.github.io/
- Wang, L., Fonseca, R. and Tian, Y., 2020. Learning search space partition for black-box optimization using monte carlo tree search. NeurIPS, 33, pp.19511-19522. [ Python ]
- Jones, D.R., Schonlau, M. and Welch, W.J., 1998. Efficient global optimization of expensive black-box functions. JGO, 13(4), pp.455-492.
- Automated Machine Learning (AutoML)
- Software for Black-Box Optimization
- Custódio, A.L., Scheinberg, K. and Nunes Vicente, L., 2017. Methodologies and software for derivative-free optimization. Advances and Trends in Optimization with Engineering Applications, pp.495-506.
- Rios, L.M. and Sahinidis, N.V., 2013. Derivative-free optimization: A review of algorithms and comparison of software implementations. JGO, 56, pp.1247-1293.
- Schaul, T., Bayer, J., Wierstra, D., Sun, Y., Felder, M., Sehnke, F., Rückstieß, T. and Schmidhuber, J., 2010. PyBrain. JMLR, 11(24), pp.743-746.
- Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P., 2007. Numerical recipes: The art of scientific computing. Cambridge University Press. (See Chapter 10. Minimization or maximization of functions.)
From 2021 to 2023, this open-source pure-Python library PyPop7 was supported by Shenzhen Fundamental Research Program under Grant No. JCYJ20200109141235597 (2,000,000 Yuan). Now it is supported by Guangdong Basic and Applied Basic Research Foundation under Grants No. 2024A1515012241 and 2021A1515110024. Furthermore, Qiqi Duan, one of its core developers, is also seeking new possible sponsors from enterprises.
Citation
If this open-source pure-Python library PyPop7 is used in your paper or project, it is highly welcomed but NOT mandatory to cite the following arXiv preprint paper: Duan, Q., Zhou, G., Shao, C., Wang, Z., Feng, M., Huang, Y., Tan, Y., Yang, Y., Zhao, Q. and Shi, Y., 2024. PyPop7: A pure-Python library for population-based black-box optimization. arXiv preprint arXiv:2212.05652. (now submitted to JMLR, under review).
Star History