Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

pyspark-test

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

pyspark-test

Check that left and right spark DataFrame are equal.

  • 0.2.0
  • PyPI
  • Socket score

Maintainers
1

pyspark-test

Code Style: Black License Unit Test PyPI version Downloads

Check that left and right spark DataFrame are equal.

This function is intended to compare two spark DataFrames and output any differences. It is inspired from pandas testing module but for pyspark, and for use in unit tests. Additional parameters allow varying the strictness of the equality checks performed.

Installation

pip install pyspark-test

Usage

assert_pyspark_df_equal(left_df, actual_df)

Additional Arguments

  • check_dtype : To compare the data types of spark dataframe. Default true
  • check_column_names : To compare column names. Default false. Not required of we are checking data types.
  • check_columns_in_order : To check the columns should be in order or not. Default to false
  • order_by : Column names with which dataframe must be sorted before comparing. Default None.

Example

import datetime

from pyspark import SparkContext
from pyspark.sql import SparkSession
from pyspark.sql.types import *

from pyspark_test import assert_pyspark_df_equal

sc = SparkContext.getOrCreate(conf=conf)
spark_session = SparkSession(sc)

df_1 = spark_session.createDataFrame(
    data=[
        [datetime.date(2020, 1, 1), 'demo', 1.123, 10],
        [None, None, None, None],
    ],
    schema=StructType(
        [
            StructField('col_a', DateType(), True),
            StructField('col_b', StringType(), True),
            StructField('col_c', DoubleType(), True),
            StructField('col_d', LongType(), True),
        ]
    ),
)

df_2 = spark_session.createDataFrame(
    data=[
        [datetime.date(2020, 1, 1), 'demo', 1.123, 10],
        [None, None, None, None],
    ],
    schema=StructType(
        [
            StructField('col_a', DateType(), True),
            StructField('col_b', StringType(), True),
            StructField('col_c', DoubleType(), True),
            StructField('col_d', LongType(), True),
        ]
    ),
)

assert_pyspark_df_equal(df_1, df_2)

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc