Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

ralsei

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

ralsei

Build modular data pipelines running inside the postgres database

  • 3.2.0
  • PyPI
  • Socket score

Maintainers
1

Ralsei

Ralsei is a lightweight and portable Python framework designed for analysts who need to quickly build modular data pipelines. It enables users to create comprehensive data preparation workflows that integrate both data collection and processing in a single, declarative pipeline. This framework is particularly beneficial for those who prefer not to depend on cloud-based solutions or local infrastructure setups.

Design goals

  • Modular Design: Allows for the creation of reusable tasks, making it easy to maintain and adapt pipelines as data requirements evolve.
  • SQL Database Integration: Operates directly on SQL databases, storing everything from raw data to processed results, thereby simplifying data tracking and analysis.
  • Resumable Tasks: Supports long-running tasks with the ability to resume operations at the row level, minimizing reprocessing in case of interruptions.
  • Workflow Control: Provides full control over the workflow, enabling users to rerun specific tasks on-demand and manage dependencies effectively.

Installation

pip install ralsei

Tip: consider using Poetry for project-based dependency management

Example

See the documentation for an in-depth explaination

init_sources.sql

CREATE TABLE {{table}}(
  id INTEGER PRIMARY KEY,
  year INT,
  name TEXT
);
{%split%}
INSERT INTO {{table}}(year, name) VALUES
(2015, 'Physics'),
(2018, 'Computer Science'),
(2021, 'Philosophy');

logic.py

import requests
import json

def download(year: int, name: str):
  response = requests.get(
     "https://foo.com/api",
     params={"year": year, "name": name},
  )
  response.raise_for_status()
  return {"json": response.text}

def parse_page(data: str):
  for item in json.loads(data)["items"]:
     yield {"university": item["name"], "rank": item["rank"]}

app.py

from typing import Optional
from pathlib import Path
import click
import sqlalchemy
from ralsei import (
  Ralsei,
  Pipeline,
  Table,
  ValueColumn,
  Placeholder,
  compose_one,
  pop_id_fields,
)
from .logic import download, parse_page

# Define your tasks
class MyPipeline(Pipeline):
  def __init__(self, schema: Optional[str]):
     self.schema = schema

  def create_tasks(self):
     return {
        "init": CreateTableSql(
           table=Table("sources", self.schema),
           sql=Path("./init_sources.sql").read_text(),
        ),
        "download": MapToNewColumns(
           table=self.outputof("init"), # (1)!
           select=(
              "SELECT id, year, name FROM {{table}} WHERE NOT {{is_done}}" # (2)!
           ),
           columns=[ValueColumn("json", "TEXT")], # (3)!
           is_done_column="_downloaded", # (4)!
           fn=compose_one(download, pop_id_fields("id")) # (5)!
        ),
        "parse": MapToNewTable(
           source_table=self.outputof("download"),
           select="SELECT id, json FROM {{source}}",
           table=Table("records", self.schema),
           columns=[
              "record_id INTEGER PRIMARY KEY", # (6)!
              ValueColumn(
                 "source_id",
                 "INT REFERENCES {{source}}",
                 Placeholder("id"),
              ),
              ValueColumn("university", "TEXT"),
              ValueColumn("rank", "INT"),
           ],
           fn=compose(parse_page, pop_id_fields("id")),
        )
     }

# Create a CLI application
@click.option("-s", "--schema", help="Database schema")
class App(Ralsei):
  def __init__(self, db: sqlalchemy.URL, schema: Optional[str]):
     super().__init__(db, MyPipeline(schema))

if __name__ == "__main__":
  App.run_cli()

The resulting app can be used like:

python ./app.py -d sqlite:///result.sqlite --schema dev run

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc