========
Rasterio
Rasterio reads and writes geospatial raster data.
.. image:: https://github.com/rasterio/rasterio/actions/workflows/tests.yaml/badge.svg
:target: https://github.com/rasterio/rasterio/actions/workflows/tests.yaml
.. image:: https://github.com/rasterio/rasterio/actions/workflows/test_gdal_latest.yaml/badge.svg
:target: https://github.com/rasterio/rasterio/actions/workflows/test_gdal_latest.yaml
.. image:: https://github.com/rasterio/rasterio/actions/workflows/test_gdal_tags.yaml/badge.svg
:target: https://github.com/rasterio/rasterio/actions/workflows/test_gdal_tags.yaml
.. image:: https://img.shields.io/pypi/v/rasterio
:target: https://pypi.org/project/rasterio/
Geographic information systems use GeoTIFF and other formats to organize and
store gridded, or raster, datasets. Rasterio reads and writes these formats and
provides a Python API based on N-D arrays.
Rasterio 1.4 works with Python >= 3.9, Numpy >= 1.24, and GDAL >= 3.5. Official
binary packages for Linux, macOS, and Windows with most built-in format drivers
plus HDF5, netCDF, and OpenJPEG2000 are available on PyPI.
Read the documentation for more details: https://rasterio.readthedocs.io/.
Example
Here's an example of some basic features that Rasterio provides. Three bands
are read from an image and averaged to produce something like a panchromatic
band. This new band is then written to a new single band TIFF.
.. code-block:: python
import numpy as np
import rasterio
# Read raster bands directly to Numpy arrays.
#
with rasterio.open('tests/data/RGB.byte.tif') as src:
r, g, b = src.read()
# Combine arrays in place. Expecting that the sum will
# temporarily exceed the 8-bit integer range, initialize it as
# a 64-bit float (the numpy default) array. Adding other
# arrays to it in-place converts those arrays "up" and
# preserves the type of the total array.
total = np.zeros(r.shape)
for band in r, g, b:
total += band
total /= 3
# Write the product as a raster band to a new 8-bit file. For
# the new file's profile, we start with the meta attributes of
# the source file, but then change the band count to 1, set the
# dtype to uint8, and specify LZW compression.
profile = src.profile
profile.update(dtype=rasterio.uint8, count=1, compress='lzw')
with rasterio.open('example-total.tif', 'w', **profile) as dst:
dst.write(total.astype(rasterio.uint8), 1)
The output:
.. image:: http://farm6.staticflickr.com/5501/11393054644_74f54484d9_z_d.jpg
:width: 640
:height: 581
API Overview
Rasterio gives access to properties of a geospatial raster file.
.. code-block:: python
with rasterio.open('tests/data/RGB.byte.tif') as src:
print(src.width, src.height)
print(src.crs)
print(src.transform)
print(src.count)
print(src.indexes)
# Printed:
# (791, 718)
# {u'units': u'm', u'no_defs': True, u'ellps': u'WGS84', u'proj': u'utm', u'zone': 18}
# Affine(300.0379266750948, 0.0, 101985.0,
# 0.0, -300.041782729805, 2826915.0)
# 3
# [1, 2, 3]
A rasterio dataset also provides methods for getting read/write windows (like
extended array slices) given georeferenced coordinates.
.. code-block:: python
with rasterio.open('tests/data/RGB.byte.tif') as src:
window = src.window(*src.bounds)
print(window)
print(src.read(window=window).shape)
# Printed:
# Window(col_off=0.0, row_off=0.0, width=791.0000000000002, height=718.0)
# (3, 718, 791)
Rasterio CLI
Rasterio's command line interface, named "rio", is documented at cli.rst <https://github.com/rasterio/rasterio/blob/master/docs/cli.rst>
__. Its rio insp
command opens the hood of any raster dataset so you can poke around
using Python.
.. code-block:: pycon
$ rio insp tests/data/RGB.byte.tif
Rasterio 0.10 Interactive Inspector (Python 3.4.1)
Type "src.meta", "src.read(1)", or "help(src)" for more information.
>>> src.name
'tests/data/RGB.byte.tif'
>>> src.closed
False
>>> src.shape
(718, 791)
>>> src.crs
{'init': 'epsg:32618'}
>>> b, g, r = src.read()
>>> b
masked_array(data =
[[-- -- -- ..., -- -- --]
[-- -- -- ..., -- -- --]
[-- -- -- ..., -- -- --]
...,
[-- -- -- ..., -- -- --]
[-- -- -- ..., -- -- --]
[-- -- -- ..., -- -- --]],
mask =
[[ True True True ..., True True True]
[ True True True ..., True True True]
[ True True True ..., True True True]
...,
[ True True True ..., True True True]
[ True True True ..., True True True]
[ True True True ..., True True True]],
fill_value = 0)
>>> np.nanmin(b), np.nanmax(b), np.nanmean(b)
(0, 255, 29.94772668847656)
Rio Plugins
Rio provides the ability to create subcommands using plugins. See
cli.rst <https://github.com/rasterio/rasterio/blob/master/docs/cli.rst#rio-plugins>
__
for more information on building plugins.
See the
plugin registry <https://github.com/rasterio/rasterio/wiki/Rio-plugin-registry>
__
for a list of available plugins.
Installation
See docs/installation.rst <docs/installation.rst>
__
Support
The primary forum for questions about installation and usage of Rasterio is
https://rasterio.groups.io/g/main. The authors and other users will answer
questions when they have expertise to share and time to explain. Please take
the time to craft a clear question and be patient about responses.
Please do not bring these questions to Rasterio's issue tracker, which we want
to reserve for bug reports and other actionable issues.
Development and Testing
See CONTRIBUTING.rst <CONTRIBUTING.rst>
__.
Documentation
See docs/ <docs/>
__.
License
See LICENSE.txt <LICENSE.txt>
__.
Authors
The rasterio
project was begun at Mapbox and was transferred to the rasterio
Github organization in October 2021.
See AUTHORS.txt <AUTHORS.txt>
__.
Changes
See CHANGES.txt <CHANGES.txt>
__.
Who is Using Rasterio?
See here <https://libraries.io/pypi/rasterio/usage>
__.