Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

scikit-gstat

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

scikit-gstat

Geostatistical expansion in the scipy style

  • 1.0.19
  • PyPI
  • Socket score

Maintainers
1

SciKit-GStat

.. image:: https://img.shields.io/pypi/v/scikit-gstat?color=green&logo=pypi&logoColor=yellow&style=flat-square :alt: PyPI :target: https://pypi.org/project/scikit-gstat

.. image:: https://img.shields.io/github/v/release/mmaelicke/scikit-gstat?color=green&logo=github&style=flat-square :alt: GitHub release (latest by date) :target: https://github.com/mmaelicke/scikit-gstat

.. image:: https://github.com/mmaelicke/scikit-gstat/workflows/Test%20and%20build%20docs/badge.svg :target: https://github.com/mmaelicke/scikit-gstat/actions

.. image:: https://codecov.io/gh/mmaelicke/scikit-gstat/branch/master/graph/badge.svg :target: https://codecov.io/gh/mmaelicke/scikit-gstat :alt: Codecov

.. image:: https://zenodo.org/badge/98853365.svg :target: https://zenodo.org/badge/latestdoi/98853365

How to cite

In case you use SciKit-GStat in other software or scientific publications, please reference this module. There is a GMD <https://www.geoscientific-model-development.net>_ publication. Please cite it like:

Mälicke, M.: SciKit-GStat 1.0: a SciPy-flavored geostatistical variogram estimation toolbox written in Python, Geosci. Model Dev., 15, 2505–2532, https://doi.org/10.5194/gmd-15-2505-2022, 2022.

The code itself is published and has a DOI. It can be cited as:

Mirko Mälicke, Romain Hugonnet, Helge David Schneider, Sebastian Müller, Egil Möller, & Johan Van de Wauw. (2022). mmaelicke/scikit-gstat: Version 1.0 (v1.0.0). Zenodo. https://doi.org/10.5281/zenodo.5970098

Full Documentation

The full documentation can be found at: https://mmaelicke.github.io/scikit-gstat

Description

SciKit-Gstat is a scipy-styled analysis module for geostatistics. It includes two base classes Variogram and OrdinaryKriging. Additionally, various variogram classes inheriting from Variogram are available for solving directional or space-time related tasks. The module makes use of a rich selection of semi-variance estimators and variogram model functions, while being extensible at the same time. The estimators include:

  • matheron
  • cressie
  • dowd
  • genton
  • entropy
  • two experimental ones: quantiles, minmax

The models include:

  • sperical
  • exponential
  • gaussian
  • cubic
  • stable
  • matérn

with all of them in a nugget and no-nugget variation. All the estimator are implemented using numba's jit decorator. The usage of numba might be subject to change in future versions.

Installation


PyPI
^^^^
.. code-block:: bash

  pip install scikit-gstat

**Note:** It can happen that the installation of numba or numpy is failing using pip. Especially on Windows systems.
Usually, a missing Dll (see eg. `#31 <https://github.com/mmaelicke/scikit-gstat/issues/31>`_) or visual c++ redistributable is the reason.

GIT:
^^^^

.. code-block:: bash

  git clone https://github.com/mmaelicke/scikit-gstat.git
  cd scikit-gstat
  pip install -r requirements.txt
  pip install -e .

Conda-Forge:
^^^^^^^^^^^^

From Version `0.5.5` on `scikit-gstat` is also available on conda-forge.
Note that for versions `< 1.0` conda-forge will not always be up to date, but
from `1.0` on, each minor release will be available.

.. code-block:: bash

  conda install -c conda-forge scikit-gstat


Quickstart
----------

The `Variogram` class needs at least a list of coordiantes and values.
All other attributes are set by default.
You can easily set up an example by using the `skgstat.data` sub-module,
that includes a growing list of sample data.

.. code-block:: python

  import skgstat as skg

  # the data functions return a dict of 'sample' and 'description'
  coordinates, values = skg.data.pancake(N=300).get('sample')

  V = skg.Variogram(coordinates=coordinates, values=values)
  print(V)

.. code-block:: bash

  spherical Variogram
  -------------------
  Estimator:         matheron
  Effective Range:   353.64
  Sill:              1512.24
  Nugget:            0.00

All variogram parameters can be changed in place and the class will automatically
invalidate and update dependent results and parameters.

.. code-block:: python

  V.model = 'exponential'
  V.n_lags = 15
  V.maxlag = 500

  # plot - matplotlib and plotly are available backends
  fig = V.plot()

.. image:: ./example.png

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc