================
sklearn-crfsuite
.. image:: https://img.shields.io/pypi/v/sklearn-crfsuite.svg
:target: https://pypi.python.org/pypi/sklearn-crfsuite
:alt: PyPI Version
.. image:: https://img.shields.io/travis/TeamHG-Memex/sklearn-crfsuite/master.svg
:target: https://travis-ci.org/TeamHG-Memex/sklearn-crfsuite
:alt: Build Status
.. image:: https://codecov.io/github/TeamHG-Memex/sklearn-crfsuite/coverage.svg?branch=master
:target: https://codecov.io/github/TeamHG-Memex/sklearn-crfsuite?branch=master
:alt: Code Coverage
.. image:: https://readthedocs.org/projects/sklearn-crfsuite/badge/?version=latest
:target: https://sklearn-crfsuite.readthedocs.io/en/latest/?badge=latest
:alt: Documentation
sklearn-crfsuite is a thin CRFsuite_ (python-crfsuite_) wrapper which provides
interface simlar to scikit-learn_. sklearn_crfsuite.CRF
is a scikit-learn
compatible estimator: you can use e.g. scikit-learn model
selection utilities (cross-validation, hyperparameter optimization) with it,
or save/load CRF models using joblib_.
.. _CRFsuite: http://www.chokkan.org/software/crfsuite/
.. _python-crfsuite: https://github.com/scrapinghub/python-crfsuite
.. _scikit-learn: http://scikit-learn.org/
.. _joblib: https://github.com/joblib/joblib
License is MIT.
Documentation can be found here <https://sklearn-crfsuite.readthedocs.io>
_.
.. image:: https://hyperiongray.s3.amazonaws.com/define-hg.svg
:target: https://www.hyperiongray.com/?pk_campaign=github&pk_kwd=sklearn-crfsuite
:alt: define hyperiongray
Changes
0.5.0 (2024-06-18)
-
The CRF.predict()
and CRF.predict_marginals()
methods now return a
numpy array, as expected by newer versions of scikit-learn.
-
Fixed the parameters of a call to the
sklearn.metrics.classification_report()
function from the
flat_classification_report()
function.
-
sequence_accuracy_score
now works with numpy arrays.
0.4.0 (2024-06-18)
-
Dropped official support for Python 3.7 and lower, and added official support
for Python 3.8 and higher.
-
Added support for scikit-learn 0.24.0 and higher.
-
Increased minimum versions of dependencies as follows:
- python-crfsuite: 0.8.3 → 0.9.7
- scikit-learn: 0.24.0
- tabulate: 0.4.2
-
Internal changes: enabled GitHub Actions for CI, added a tox environment for
minimum supported versions of dependencies, applied automatic code cleanups.
0.3.6 (2017-06-22)
- added
sklearn_crfsuite.metrics.flat_recall_score
.
0.3.5 (2017-03-21)
- Properly close file descriptor in
FileResource.cleanup
;
- declare Python 3.6 support, stop testing on Python 3.3.
0.3.4 (2016-11-17)
0.3.3 (2016-03-15)
- scikit-learn dependency is now optional for sklearn_crfsuite;
it is required only when you use metrics and scorers;
- added
metrics.flat_precision_score
.
0.3.2 (2015-12-18)
- Ignore more errors in
FileResource.__del__
.
0.3.1 (2015-12-17)
- Ignore errors in
FileResource.__del__
.
0.3 (2015-12-17)
- Added
sklearn_crfsuite.metrics.sequence_accuracy_score()
function and
related sklearn_crfsuite.scorers.sequence_accuracy
;
FileResource.__del__
method made more robust.
0.2 (2015-12-11)
-
backwards-incompatible: crf.tagger
attribute is renamed to
crf.tagger_
; when model is not trained accessing this attribute
no longer raises an exception, its value is set to None instead.
-
new CRF attributes available after training:
classes_
size_
num_attributes_
attributes_
state_features_
transition_features_
-
Tutorial is added.
0.1 (2015-11-27)
Initial release.