Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

sophuspy

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

sophuspy

A python binding using pybind11 for Sophus, which is a C++ Lie library.(SO3 && SE3)

  • 1.2.0
  • PyPI
  • Socket score

Maintainers
1

SophusPy

Overview

A python binding using pybind11 for Sophus, which is a C++ Lie library.(SO3 && SE3), used for 2d and 3d geometric problems (i.e. for Computer Vision or Robotics applications)

SophusPy is perfectly compatible with Numpy.

Installation:

pip install sophuspy

Examples

1. create SO2, SE2, SO3 and SE3

import numpy as np
import sophuspy as sp

# 1. constructor of SO2
sp.SO2()                    # default
sp.SO2([[1, 0],
        [0, 1]])            # list
sp.SO2(np.eye(2))           # numpy
'''
SO2([[1, 0],
     [0, 1]])
'''

# 2. constructor of SO3
sp.SO3()                    # default
sp.SO3([[1, 0, 0],
        [0, 1, 0],
        [0, 0, 1]])         # list
sp.SO3(np.eye(3))           # numpy
'''
SO3([[1, 0, 0],
     [0, 1, 0],
     [0, 0, 1]])
'''

# 3. constructor of SE2
sp.SE2()                    # default
sp.SE2([[1, 0, 0],
        [0, 1, 0],
        [0, 0, 1]])         # list
sp.SE2(np.eye(3))           # numpy
'''
SE2([[1, 0, 0],
     [0, 1, 0],
     [0, 0, 1]])
'''

# 4. constructor of SE3
sp.SE3()                    # default
sp.SE3([[1, 0, 0, 0],
        [0, 1, 0, 0],
        [0, 0, 1, 0],
        [0, 0, 0, 1]])      # list
sp.SE3(np.eye(4))           # numpy
'''
SE3([[1, 0, 0, 0],
     [0, 1, 0, 0],
     [0, 0, 1, 0],
     [0, 0, 0, 1]])
'''

# 5. R, t constructor of SE2
sp.SE2(np.eye(2), np.ones(2)) # R, t
'''
SE2([[1, 0, 1],
     [0, 1, 1],
     [0, 0, 1]])
'''

# 6. R, t constructor of SE3
sp.SE3(np.eye(3), np.ones(3)) # R, t
'''
SE3([[1, 0, 0, 1],
     [0, 1, 0, 1],
     [0, 0, 1, 1],
     [0, 0, 0, 1]])
'''

2. multiplication (SO2 & SE2 are similar)

R = sp.SO3()
R1 = sp.SO3([[0, 1, 0],
             [0, 0, 1],
             [1, 0, 0]])
# 1. SO3 * SO3
R * R1
'''
SO3([[0, 1, 0],
     [0, 0, 1],
     [1, 0, 0]])
'''

# 2.
R1 *= R


T = sp.SE3()
T1 = sp.SE3(R1.matrix(), np.ones(3))

# 3. SE3 * SE3
T * T1
'''
SE3([[0, 1, 0, 1],
     [0, 0, 1, 1],
     [1, 0, 0, 1],
     [0, 0, 0, 1]])
'''

# 4.
T1 *= T

3. rotate and translate points (SO2 & SE2)

R = sp.SO2([[0, -1],
            [1,  0]])
T = sp.SE2(R.matrix(), np.ones(2))

pt = np.array([1, 2])
pts = np.array([[1, 2],
                [3, 4]])

# 1. single point
R * pt  # array([-2., 1.])

# 2. N points
R * pts # array([[-2., 1.],
        #        [-4., 3.]])

# 3. single point
T * pt  # array([-1., 2.])

# 4. N points
T * pts # array([[-1.,  2.],
        #        [-3.,  4.]])

4. rotate and translate points (SO3 & SE3)

R = sp.SO3([[0, 1, 0],
            [0, 0, 1],
            [1, 0, 0]])
T = sp.SE3(R.matrix(), np.ones(3))

pt = np.array([1, 2, 3])
pts = np.array([[1, 2, 3],
                [4, 5, 6]])

# 1. single point
R * pt  # array([2., 3., 1.])

# 2. N points
R * pts # array([[2., 3., 1.],
        #        [5., 6., 4.]])

# 3. single point
T * pt  # array([3., 4., 2.])

# 4. N points
T * pts # array([[3., 4., 2.],
        #        [6., 7., 5.]])

5. interfaces (SO2 & SE2 are similar)

R = sp.SO3([[0, 1, 0],
            [0, 0, 1],
            [1, 0, 0]])
T = sp.SE3(R.matrix(), np.ones(3))

# 1. 
R.matrix()
'''
array([[0., 1., 0.],
       [0., 0., 1.],
       [1., 0., 0.]])
'''

# 2.
R.log() # array([-1.20919958, -1.20919958, -1.20919958])

# 3.
R.inverse()
'''
SO3([[0, 0, 1],
     [1, 0, 0],
     [0, 1, 0]])
'''

# 4.
R.copy()

# 5.
T.matrix()
'''
array([[0., 1., 0., 1.],
       [0., 0., 1., 1.],
       [1., 0., 0., 1.],
       [0., 0., 0., 1.]])
'''

# 6.
T.matrix3x4()
'''
array([[0., 1., 0., 1.],
       [0., 0., 1., 1.],
       [1., 0., 0., 1.]])
'''
T_SE2.matrix2x3() # For SE2

# 7.
T.so3()
'''
SO3([[0, 1, 0],
     [0, 0, 1],
     [1, 0, 0]])
'''

# 8.
T.log() # array([1., 1., 1., -1.20919958, -1.20919958, -1.20919958])

# 9.
T.inverse()
'''
SE3([[ 0,  0,  1, -1],
     [ 1,  0,  0, -1],
     [ 0,  1,  0, -1],
     [ 0,  0,  0,  1]])
'''

# 10.
T.copy()

# 11.
T.translation() # array([1., 1., 1.])

# 12.
T.rotationMatrix()
'''
array([[0., 1., 0.],
       [0., 0., 1.],
       [1., 0., 0.]])
'''

# 13.
T.setRotationMatrix(np.eye(3))  # set SO3 matrix

# 14.
T.setTranslation(np.zeros(3))   # set translation

5. static methods

sp.SO2.hat(1)
'''
array([[ 0., -1.],
       [ 1.,  0.]])
'''

sp.SO3.hat(np.ones(3))
'''
array([[ 0., -1.,  1.],
       [ 1.,  0., -1.],
       [-1.,  1.,  0.]])
'''

sp.SO2.exp(1)
'''
SO2([[  0.54030230586814, -0.841470984807897],
     [ 0.841470984807897,   0.54030230586814]])
'''

sp.SO3.exp(np.ones(3))
'''
array([[ 0.22629564, -0.18300792,  0.95671228],
       [ 0.95671228,  0.22629564, -0.18300792],
       [-0.18300792,  0.95671228,  0.22629564]])
'''

sp.SE2.hat(np.ones(3))
'''
array([[ 0., -1.,  1.],
       [ 1.,  0.,  1.],
       [ 0.,  0.,  0.]])
'''

sp.SE3.hat(np.ones(6))
'''
array([[ 0., -1.,  1.,  1.],
       [ 1.,  0., -1.,  1.],
       [-1.,  1.,  0.,  1.],
       [ 0.,  0.,  0.,  0.]])
'''

sp.SE2.exp(np.ones(3))
'''
SE2([[  0.54030230586814, -0.841470984807897,  0.381773290676036],
     [ 0.841470984807897,   0.54030230586814,   1.30116867893976],
     [                 0,                  0,                  1]])
'''

sp.SE3.exp(np.ones(6))
'''
array([[ 0.22629564, -0.18300792,  0.95671228,  1.        ],
       [ 0.95671228,  0.22629564, -0.18300792,  1.        ],
       [-0.18300792,  0.95671228,  0.22629564,  1.        ],
       [ 0.        ,  0.        ,  0.        ,  1.        ]])
'''

6. others functions

# 1. copy SO3
sp.copyto(R, R1) # copytoSO3(SO3d &dst, const SO3d &src)

# 2. copy SE3
sp.copyto(T, T1) # copytoSE3(SE3d &dst, const SE3d &src)


# 3.if R is not a strict rotation matrix, normalize it. Uses Eigen3 
# Eigen::Quaterniond q(R);
# q.normalized().toRotationMatrix();
R_matrix = np.array([[1.   , 0.001, 0.   ],
                     [0.   , 1.   , 0.   ],
                     [0.   , 0.   , 1.   ]])

sp.to_orthogonal(R_matrix)
sp.to_orthogonal_3d(R_matrix)      # the same as to_orthogonal
'''
array([[ 9.99999875e-01,  4.99999969e-04,  0.00000000e+00],
       [-4.99999969e-04,  9.99999875e-01, -0.00000000e+00],
       [-0.00000000e+00,  0.00000000e+00,  1.00000000e+00]])
'''
# if R(2D) is not a strict rotation matrix, normalize it. Uses Eigen3 
# Eigen::Rotation2Dd rotation;
# rotation.fromRotationMatrix(R);
# rotation.toRotationMatrix();
sp.to_orthogonal_2d(matrix2x2)      # 2D verison to_orthogonal 

# 4. invert N poses in a row
pose = T.matrix3x4().ravel()    # array([1., 0., 0., 0., 0., 1., 0., 0., 0., 0., 1., 0.])
sp.invert_poses(pose)           # array([1., 0., 0., 0., 0., 1., 0., 0., 0., 0., 1., 0.]) identity matrix returns the same

poses = np.array([[1., 0., 0., 0., 0., 1., 0., 0., 0., 0., 1., 0.],
                  [0., 1., 0., 1., 0., 0., 1., 1., 1., 0., 0., 1.]])
sp.invert_poses(poses)
'''
array([[ 1.,  0.,  0., -0.,  0.,  1.,  0., -0.,  0.,  0.,  1., -0.],
       [ 0.,  0.,  1., -1.,  1.,  0.,  0., -1.,  0.,  1.,  0., -1.]])
'''

# 6. transform N points by M poses to form N * M points
points = np.array([[1., 2., 3.],
                   [4., 5., 6.],
                   [7., 8., 9.]])
sp.transform_points_by_poses(poses, points)
'''
array([[ 1.,  2.,  3.],
       [ 4.,  5.,  6.],
       [ 7.,  8.,  9.],
       [ 3.,  4.,  2.],
       [ 6.,  7.,  5.],
       [ 9., 10.,  8.]])
'''

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc