Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

statinf

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

statinf

A library for statistics and causal inference

  • 1.3.0
  • PyPI
  • Socket score

Maintainers
1

STATINF

1. Installation

Downloads PyPI version

You can get statinf from PyPI with:

pip install statinf

statinf is a library for statistics and causal inference. It provides main the statistical models ranging from the traditional OLS to Neural Networks.

The library is supported on Windows, Linux and MacOs.

2. Documentation

You can find the full documentation at https://www.florianfelice.com/statinf.

You can also find an FAQ and the latest news of the library on the documentation.

3. Available modules

Here is a non-exhaustive list of available modules on statinf:

  1. MLP implements MultiLayer Perceptron (see MLP for more details and examples).

  2. OLS allows to use Ordinary Least Squares for linear regressions (see OLS for more details and examples).

  3. GLM implements the Generalized Linear Models see GLM for more details and examples).

  4. stats allows to use descriptive and tests statistics.

  5. data is a module to process data such as data generation, One Hot Encoding and others (see data processing or (see data generation modules for more details).

You can find the below examples and many more on https://www.florianfelice.com/statinf. Stay tuned with the future releases.

3.1. OLS

statinf comes with the OLS regression implemented with the analytical formula:

(X'X)^{-1}X'Y

from statinf.regressions import OLS
from statinf.data import generate_dataset

# Generate a synthetic dataset
data = generate_dataset(coeffs=[1.2556, -0.465, 1.665414, 2.5444, -7.56445], n=1000, std_dev=1.6)

# We set the OLS formula
formula = "Y ~ X0 + X1 + X2 + X3 + X4 + X1*X2 + exp(X2)"
# We fit the OLS with the data, the formula and without intercept
ols = OLS(formula, df, fit_intercept=True)

ols.summary()

The output will be:

==================================================================================
|                                  OLS summary                                   |
==================================================================================
| R²             =            0.98475 | R² Adj.      =                   0.98464 |
| n              =                999 | p            =                         7 |
| Fisher value   =          10676.727 |                                          |
==================================================================================
| Variables         | Coefficients   | Std. Errors  | t-values   | Probabilities |
==================================================================================
| X0                |         1.3015 |      0.03079 |     42.273 |     0.0   *** |
| X1                |       -0.48712 |      0.03123 |    -15.597 |     0.0   *** |
| X2                |        1.62079 |      0.04223 |     38.377 |     0.0   *** |
| X3                |        2.55237 |       0.0326 |     78.284 |     0.0   *** |
| X4                |       -7.54776 |      0.03247 |   -232.435 |     0.0   *** |
| X1*X2             |        0.03626 |      0.02866 |      1.265 |   0.206       |
| exp(X2)           |       -0.00929 |      0.01551 |     -0.599 |   0.549       |
==================================================================================
| Significance codes: 0. < *** < 0.001 < ** < 0.01 < * < 0.05 < . < 0.1 < '' < 1 |

3.2. GLM

The logistic regression can be used for binary classification where Y follows a Bernoulli distribution. With X being the matrix of regressors, we have:

p=\mathbb{P}(Y=1)=\dfrac{1}{1+e^{-X\beta}}

We then implement the regression with:

from statinf.regressions import GLM
from statinf.data import generate_dataset

# Generate a synthetic dataset
data = generate_dataset(coeffs=[1.2556, -6.465, 1.665414, -1.5444], n=2500, std_dev=10.5, binary=True)

# We split data into train/test/application
train = data.iloc[0:1000]
test = data.iloc[1001:2000]


# We set the linear formula for Xb
formula = "Y ~ X0 + X1 + X2 + X3"
logit = GLM(formula, train, test_set=test)

# Fit the model
logit.fit(plot=False, maxit=10)

logit.get_weights()

The ouput will be:

==================================================================================
|                                  Logit summary                                 |
==================================================================================
| McFadden R²     =          0.67128 | McFadden R² Adj.    =              0.6424 |
| Log-Likelihood  =          -227.62 | Null Log-Likelihood =             -692.45 |
| LR test p-value =              0.0 | Covariance          =           nonrobust |
| n               =              999 | p                   =                  5  |
| Iterations      =                8 | Convergence         =                True |
==================================================================================
| Variables         | Coefficients   | Std. Errors  | t-values   | Probabilities |
==================================================================================
| X0                |       -1.13024 |      0.10888 |    -10.381 |     0.0   *** |
| X1                |        0.02963 |      0.07992 |      0.371 |   0.711       |
| X2                |       -1.40968 |       0.1261 |    -11.179 |     0.0   *** |
| X3                |         0.5253 |      0.08966 |      5.859 |     0.0   *** |
==================================================================================
| Significance codes: 0. < *** < 0.001 < ** < 0.01 < * < 0.05 < . < 0.1 < '' < 1 |
==================================================================================

3.3. Multi Layer Perceptron

You can train a Neural Network using the MLP class. The below example shows how to train an MLP with 1 single linear layer. It is equivalent to implement an OLS with Gradient Descent.

from statinf.data import generate_dataset
from statinf.ml import MLP, Layer

# Generate the synthetic dataset
data = generate_dataset(coeffs=[1.2556, -6.465, 1.665414, 1.5444], n=1000, std_dev=1.6)

Y = ['Y']
X = [c for c in data.columns if c not in Y]

# Initialize the network and its architecture
nn = MLP()
nn.add(Layer(4, 1, activation='linear'))

# Train the neural network
nn.train(data=data, X=X, Y=Y, epochs=1, learning_rate=0.001)

# Extract the network's weights
print(nn.get_weights())

Output:

{'weights 0': array([[ 1.32005564],
       [-6.38121934],
       [ 1.64515704],
       [ 1.48571785]]), 'bias 0': array([0.81190412])}

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc