TensorFlow Recommenders
TensorFlow Recommenders is a library for building recommender system models
using TensorFlow.
It helps with the full workflow of building a recommender system: data
preparation, model formulation, training, evaluation, and deployment.
It's built on Keras and aims to have a gentle learning curve while still giving
you the flexibility to build complex models.
Installation
Make sure you have TensorFlow 2.x installed, and install from pip
:
pip install tensorflow-recommenders
Documentation
Have a look at our
tutorials and
API reference.
Quick start
Building a factorization model for the Movielens 100K dataset is very simple
(Colab):
from typing import Dict, Text
import tensorflow as tf
import tensorflow_datasets as tfds
import tensorflow_recommenders as tfrs
ratings = tfds.load('movielens/100k-ratings', split="train")
movies = tfds.load('movielens/100k-movies', split="train")
ratings = ratings.map(lambda x: {
"movie_id": tf.strings.to_number(x["movie_id"]),
"user_id": tf.strings.to_number(x["user_id"])
})
movies = movies.map(lambda x: tf.strings.to_number(x["movie_id"]))
class Model(tfrs.Model):
def __init__(self):
super().__init__()
self.user_model = tf.keras.layers.Embedding(
input_dim=2000, output_dim=64)
self.item_model = tf.keras.layers.Embedding(
input_dim=2000, output_dim=64)
self.task = tfrs.tasks.Retrieval(
metrics=tfrs.metrics.FactorizedTopK(
candidates=movies.batch(128).map(self.item_model)
)
)
def compute_loss(self, features: Dict[Text, tf.Tensor], training=False) -> tf.Tensor:
user_embeddings = self.user_model(features["user_id"])
movie_embeddings = self.item_model(features["movie_id"])
return self.task(user_embeddings, movie_embeddings)
model = Model()
model.compile(optimizer=tf.keras.optimizers.Adagrad(0.5))
tf.random.set_seed(42)
shuffled = ratings.shuffle(100_000, seed=42, reshuffle_each_iteration=False)
train = shuffled.take(80_000)
test = shuffled.skip(80_000).take(20_000)
model.fit(train.batch(4096), epochs=5)
model.evaluate(test.batch(4096), return_dict=True)