Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

thepipe-api

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

thepipe-api

Document extraction, powered by multimodal LLMs.

  • 1.3.9
  • PyPI
  • Socket score

Maintainers
1
Pipeline Illustration

thepi.pe

python-gh-action codecov MIT license PyPI Website

Extract clean data from tricky documents ⚡

thepi.pe is a package that can scrape clean markdown or accurately extract structured data from complex documents. It uses vision-language models (VLMs) under the hood, and works out-of-the-box with any LLM, VLM, or vector database. It can be used right away on a hosted cloud, or it can be run locally.

Features 🌟

  • Scrape clean markdown, tables, and images from any document or webpage
  • Works out-of-the-box with LLMs, vector databases, and RAG frameworks
  • AI-native filetype detection, layout analysis, and structured data extraction
  • Accepts a wide range of sources, including PDFs, URLs, Word docs, Powerpoints, Python notebooks, GitHub repos, videos, audio, and more

Get started in 5 minutes 🚀

thepi.pe can read a wide range of filetypes and web sources, so it requires a few dependencies. It also requires vision-language model inference for AI extraction features. For these reasons, we host an API that works out-of-the-box. For more detailed setup instructions, view the docs.

pip install thepipe-api

Hosted API (Python)

You can get an API key by signing up for a free account at thepi.pe. It is completely free to try out. The, simply set the THEPIPE_API_KEY environment variable to your API key.

Scrape Function

from thepipe.scraper import scrape_file
from thepipe.core import chunks_to_messages
from openai import OpenAI

# scrape clean markdown
chunks = scrape_file(filepath="paper.pdf", ai_extraction=False)

# call LLM with scraped chunks
client = OpenAI()
response = client.chat.completions.create(
    model="gpt-4o",
    messages=chunks_to_messages(chunks),
)

The output from thepi.pe is a list of chunks containing all content within the source document. These chunks can easily be converted to a prompt format that is compatible with any LLM or multimodal model with thepipe.core.chunks_to_messages, which gives the following format:

[
  {
    "role": "user",
    "content": [
      {
        "type": "text",
        "text": "..."
      },
      {
        "type": "image_url",
        "image_url": {
          "url": "data:image/jpeg;base64,..."
        }
      }
    ]
  }
]

Extract Function

The extract function allows you to extract structured data from documents. You can use it as follows:

from thepipe.extract import extract_from_file

# Define your schema
schema = {
    "name": "string",
    "age": "int",
    "is_student": "bool"
}

# Extract data from the file
result = extract_from_file(
    file_path="document.pdf",
    schema=schema,
    ai_model="gpt-4o-mini",
    multiple_extractions=True
)

print(result)

Local Installation (Python)

For a local installation, you can use the following command:

pip install thepipe-api[local]

You must have a local LLM server setup and running for AI extraction features. You can use any local LLM server that follows OpenAI format (such as LiteLLM) or a provider (such as OpenRouter or OpenAI). Next, set the LLM_SERVER_BASE_URL environment variable to your LLM server's endpoint URL and set LLM_SERVER_API_KEY. the DEFAULT_AI_MODEL environment variable can be set to your VLM of choice. For example, you would use openai/gpt-4o-mini if using OpenRouter or gpt-4o-mini if using OpenAI.

For full functionality with media-rich sources, you will need to install the following dependencies:

apt-get update && apt-get install -y git ffmpeg tesseract-ocr
python -m playwright install --with-deps chromium

When using thepi.pe locally, be sure to append local=True to your function calls:

chunks = scrape_url(url="https://example.com", local=True)

You can also use thepi.pe from the command line:

thepipe path/to/folder --include_regex .*\.tsx --local

Supported File Types 📚

SourceInput typesMultimodalNotes
WebpageURLs starting with http, https, ftp✔️Scrapes markdown, images, and tables from web pages. ai_extraction available for AI content extraction from the webpage's screenshot
PDF.pdf✔️Extracts page markdown and page images. ai_extraction available to use a VLM for complex or scanned documents
Word Document.docx✔️Extracts text, tables, and images
PowerPoint.pptx✔️Extracts text and images from slides
Video.mp4, .mov, .wmv✔️Uses Whisper for transcription and extracts frames
Audio.mp3, .wav✔️Uses Whisper for transcription
Jupyter Notebook.ipynb✔️Extracts markdown, code, outputs, and images
Spreadsheet.csv, .xls, .xlsxConverts each row to JSON format, including row index for each
Plaintext.txt, .md, .rtf, etcSimple text extraction
Image.jpg, .jpeg, .png✔️Uses pytesseract for OCR in text-only mode
ZIP File.zip✔️Extracts and processes contained files
Directoryany path/to/folder✔️Recursively processes all files in directory
YouTube Video (known issues)YouTube video URLs starting with https://youtube.com or https://www.youtube.com.✔️Uses pytube for video download and Whisper for transcription. For consistent extraction, you may need to modify your pytube installation to send a valid user agent header (see this issue).
TweetURLs starting with https://twitter.com or https://x.com✔️Uses unofficial API, may break unexpectedly
GitHub RepositoryGitHub repo URLs starting with https://github.com or https://www.github.com✔️Requires GITHUB_TOKEN environment variable

How it works 🛠️

thepi.pe uses computer vision models and heuristics to extract clean content from the source and process it for downstream use with language models, or vision transformers. You can feed these messages directly into the model, or alternatively you can use chunker.chunk_by_document, chunker.chunk_by_page, chunker.chunk_by_section, chunker.chunk_semantic to chunk these messages for a vector database such as ChromaDB or a RAG framework. A chunk can be converted to LlamaIndex Document/ImageDocument with .to_llamaindex.

⚠️ It is important to be mindful of your model's token limit. GPT-4o does not work with too many images in the prompt (see discussion here). To remedy this issue, either use an LLM with a larger context window, extract larger documents with text_only=True, or embed the chunks into vector database.

Sponsors

Book us with Cal.com

Thank you to Cal.com for sponsoring this project.

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc