Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

tleco

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

tleco

  • 1.0.3
  • PyPI
  • Socket score

Maintainers
1

Tleco

Tleco stands for both in the fire and rise in the nahuatl language. Tleco is a numerical code that simulates particles in relativistic plasma, and the rise of radiation from accelerating particles.

Tleco has already been used for several publications (previously called Paramo):

  • Rueda-Becerril, J. M., Harrison, A. O., & Giannios, D. 2021, MNRAS, 501, 4092, doi: 10.1093/mnras/staa3925
  • Davis, Z., Rueda-Becerril, J. M., & Giannios, D. 2022, MNRAS, 513, 5766, doi: 10.1093/mnras/stac1282
  • Combi, L., & Siegel, D. M. 2023, ApJ, 944, 28, doi: 10.3847/1538-4357/acac29

Installation

Ensure you have Python 3.10 or later installed on your system. Tleco can be installed via pip and works on all major operating systems. Using and building with Tleco does not require any compiler. A rust compiler is necessary to develop Tleco.

pip install tleco

Tleco consist of both Rust functions and Python functions. Follow the example below to get access to correct functions:

import tleco #tleco.rust_functions
from tleco import constants as cons #from tleco gives access to the python files and functions

Examples and Development

Getting started with Tleco is straightforward and several examples can found in Examples]. Follow these instructions to run the example 'broken_pwl_law_full_example.py'.

git clone https://github.com/zkdavis/Tleco.git
cd Tleco
pip install -r requirements.txt
pip install tleco
python examples/broken_pwl_law_full_example.py

Setting up a developer environment

Contributors and developers are welcome to enhance Tleco's features or address issues. Following the steps above for running the broken power-law example will get you nearly ready for development. You will still need to install a rust compiler(https://www.rust-lang.org/tools/install). Once installed if any of the rust files are changed make sure to rebuild the object with maturin:

maturin develop

Submitting Changes

  • Fork the repository.
  • Create your feature branch (git checkout -b feature/AmazingFeature).
  • Commit your changes (git commit -am 'Add some AmazingFeature').
  • Push to the branch (git push origin feature/AmazingFeature).
  • Open a pull request.

Functions

This section is not complete and will be updated over time

Rust Functions

  • ic_iso_monochrome - computes the emissivity($\frac{ergs}{cm^3 Sr}$) at frequency nuout(Hz) from inverse Compton (IC) scattering in an isotropic photon field assuming the photonfield is monochromatic [see in src/radiation.rs:L356]

    • Parameters:
      • nuout (f64): frequency(Hz) in the comoving frame to compute emission at.
      • uext (f64): energy density($\frac{ergs}{cm^-3}$) of the external photon field in the comoving frame.
      • nuext (f64): frequency(Hz) in the comoving frame of the external photon field.
      • n (&Array1): particle distribution as function of lorentz factor
      • g (&Array1): Lorentz factor grid
    • Returns:
      • jnu (f64): emissivity($\frac{ergs}{cm^3 Sr}$) for frequency nuout
  • ic_iso_monochrome_full - computes the emissivity($\frac{ergs}{cm^3 Sr}$) from inverse Compton (IC) scattering in an isotropic photon field assuming the photonfield is monochromatic [see in src/radiation.rs:L406]

    • Parameters:
      • freqs (&Array1): frequency(Hz) array in the comoving frame to compute emission over.
      • uext (f64): energy density($\frac{ergs}{cm^-3}$) of the external photon field in the comoving frame.
      • nuext (f64): frequency(Hz) in the comoving frame of the external photon field.
      • n (&Array1): particle distribution as function of lorentz factor
      • g (&Array1): Lorentz factor grid
    • Returns:
      • jic (Array1): emissivity($\frac{ergs}{cm^3 Sr}$) for frequency range freq
  • rad_cool_pwl - computes the radiative inverse Compton cooling ($\frac{\partial g}{\partial t}$ [$s^{-1}$]) from isotropic photon field uu($\frac{ergs}{cm^-3}$) [see in src/radiation.rs:L502]

    • Parameters:
      • gg (&Array1): Lorentz factor grid
      • freqs (&Array1): frequency(Hz) array in the comoving frame.
      • uu (&Array1): energy density($\frac{ergs}{cm^-3}$) of photon field in the comoving frame for every frequency in freqs.
      • with_kn (bool): bool that will include Klein Nishina affects to the cross section when true.
    • Returns:
      • dotg (Array1): radiative cooling ($\frac{\partial g}{\partial t}$ [$s^{-1}$])
  • rad_cool_mono - computes the radiative inverse Compton cooling ($\frac{\partial g}{\partial t}$ [$s^{-1}$]) from isotropic monotonic photon field u0($\frac{ergs}{cm^-3}$) [see in src/radiation.rs:L557]

    • Parameters:
      • gg (&Array1): Lorentz factor grid
      • nu0 (f64): frequency(Hz) in the comoving frame of the photon field u0.
      • u0 (f64): energy density($\frac{ergs}{cm^-3}$) of photon field in the comoving frame.
      • with_kn (bool): bool that will include Klein Nishina affects to the cross section when true.
    • Returns:
      • dotg (Array1): radiative cooling ($\frac{\partial g}{\partial t}$ [$s^{-1}$])

Python Functions

  • power_law - Computes a power law function. [see in pysrc/tleco/misc_func.py:L33]
    • Parameters:
    • Returns:
      • f (**): Array of output values according to the power law.f = np.zeros_like(g)bounds = (g >= g_min) & (g <= g_max)f[bounds] = np.power(g, p)[bounds]if(normalize):f = f/np.trapz(f,g)return f*n0

Requirements

The following Python packages are used in this project:

  • astropy 6.1.4
  • ebltable 0.5.2
  • matplotlib 3.9.2
  • numpy 2.1.2
  • pytest 8.3.3
  • scipy 1.14.1
  • toml 0.10.2
  • tqdm 4.66.5
  • maturin 1.5
Python Version

This project requires Python ^3.10.

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc