Together Python API library
The Together Python API Library is the official Python client for Together's API platform, providing a convenient way for interacting with the REST APIs and enables easy integrations with Python 3.8+ applications with easy to use synchronous and asynchronous clients.
Installation
🚧
The Library was rewritten in v1.0.0 released in April of 2024. There were significant changes made.
To install Together Python Library from PyPI, simply run:
pip install --upgrade together
Setting up API Key
🚧 You will need to create an account with Together.ai to obtain a Together API Key.
Once logged in to the Together Playground, you can find available API keys in this settings page.
Setting environment variable
export TOGETHER_API_KEY=xxxxx
Using the client
from together import Together
client = Together(api_key="xxxxx")
This repo contains both a Python Library and a CLI. We'll demonstrate how to use both below.
Usage – Python Client
Chat Completions
import os
from together import Together
client = Together(api_key=os.environ.get("TOGETHER_API_KEY"))
response = client.chat.completions.create(
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
messages=[{"role": "user", "content": "tell me about new york"}],
)
print(response.choices[0].message.content)
Streaming
import os
from together import Together
client = Together(api_key=os.environ.get("TOGETHER_API_KEY"))
stream = client.chat.completions.create(
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
messages=[{"role": "user", "content": "tell me about new york"}],
stream=True,
)
for chunk in stream:
print(chunk.choices[0].delta.content or "", end="", flush=True)
Async usage
import os, asyncio
from together import AsyncTogether
async_client = AsyncTogether(api_key=os.environ.get("TOGETHER_API_KEY"))
messages = [
"What are the top things to do in San Francisco?",
"What country is Paris in?",
]
async def async_chat_completion(messages):
async_client = AsyncTogether(api_key=os.environ.get("TOGETHER_API_KEY"))
tasks = [
async_client.chat.completions.create(
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
messages=[{"role": "user", "content": message}],
)
for message in messages
]
responses = await asyncio.gather(*tasks)
for response in responses:
print(response.choices[0].message.content)
asyncio.run(async_chat_completion(messages))
Completions
Completions are for code and language models shown here. Below, a code model example is shown.
import os
from together import Together
client = Together(api_key=os.environ.get("TOGETHER_API_KEY"))
response = client.completions.create(
model="codellama/CodeLlama-34b-Python-hf",
prompt="Write a Next.js component with TailwindCSS for a header component.",
max_tokens=200,
)
print(response.choices[0].text)
Streaming
import os
from together import Together
client = Together(api_key=os.environ.get("TOGETHER_API_KEY"))
stream = client.completions.create(
model="codellama/CodeLlama-34b-Python-hf",
prompt="Write a Next.js component with TailwindCSS for a header component.",
stream=True,
)
for chunk in stream:
print(chunk.choices[0].delta.content or "", end="", flush=True)
Async usage
import os, asyncio
from together import AsyncTogether
async_client = AsyncTogether(api_key=os.environ.get("TOGETHER_API_KEY"))
prompts = [
"Write a Next.js component with TailwindCSS for a header component.",
"Write a python function for the fibonacci sequence",
]
async def async_chat_completion(prompts):
tasks = [
async_client.completions.create(
model="codellama/CodeLlama-34b-Python-hf",
prompt=prompt,
)
for prompt in prompts
]
responses = await asyncio.gather(*tasks)
for response in responses:
print(response.choices[0].text)
asyncio.run(async_chat_completion(prompts))
Image generation
import os
from together import Together
client = Together(api_key=os.environ.get("TOGETHER_API_KEY"))
response = client.images.generate(
prompt="space robots",
model="stabilityai/stable-diffusion-xl-base-1.0",
steps=10,
n=4,
)
print(response.data[0].b64_json)
Embeddings
from typing import List
from together import Together
client = Together(api_key=os.environ.get("TOGETHER_API_KEY"))
def get_embeddings(texts: List[str], model: str) -> List[List[float]]:
texts = [text.replace("\n", " ") for text in texts]
outputs = client.embeddings.create(model=model, input = texts)
return [outputs.data[i].embedding for i in range(len(texts))]
input_texts = ['Our solar system orbits the Milky Way galaxy at about 515,000 mph']
embeddings = get_embeddings(input_texts, model='togethercomputer/m2-bert-80M-8k-retrieval')
print(embeddings)
Files
The files API is used for fine-tuning and allows developers to upload data to fine-tune on. It also has several methods to list all files, retrive files, and delete files. Please refer to our fine-tuning docs here.
import os
from together import Together
client = Together(api_key=os.environ.get("TOGETHER_API_KEY"))
client.files.upload(file="somedata.jsonl")
client.files.list()
client.files.retrieve(id="file-d0d318cb-b7d9-493a-bd70-1cfe089d3815")
client.files.retrieve_content(id="file-d0d318cb-b7d9-493a-bd70-1cfe089d3815")
client.files.delete(id="file-d0d318cb-b7d9-493a-bd70-1cfe089d3815")
Fine-tunes
The finetune API is used for fine-tuning and allows developers to create finetuning jobs. It also has several methods to list all jobs, retrive statuses and get checkpoints. Please refer to our fine-tuning docs here.
import os
from together import Together
client = Together(api_key=os.environ.get("TOGETHER_API_KEY"))
client.fine_tuning.create(
training_file = 'file-d0d318cb-b7d9-493a-bd70-1cfe089d3815',
model = 'mistralai/Mixtral-8x7B-Instruct-v0.1',
n_epochs = 3,
n_checkpoints = 1,
batch_size = "max",
learning_rate = 1e-5,
suffix = 'my-demo-finetune',
wandb_api_key = '1a2b3c4d5e.......',
)
client.fine_tuning.list()
client.fine_tuning.retrieve(id="ft-c66a5c18-1d6d-43c9-94bd-32d756425b4b")
client.fine_tuning.cancel(id="ft-c66a5c18-1d6d-43c9-94bd-32d756425b4b")
client.fine_tuning.list_events(id="ft-c66a5c18-1d6d-43c9-94bd-32d756425b4b")
client.fine_tuning.download(id="ft-c66a5c18-1d6d-43c9-94bd-32d756425b4b")
Models
This lists all the models that Together supports.
import os
from together import Together
client = Together(api_key=os.environ.get("TOGETHER_API_KEY"))
models = client.models.list()
for model in models:
print(model)
Usage – CLI
Chat Completions
together chat.completions \
--message "system" "You are a helpful assistant named Together" \
--message "user" "What is your name?" \
--model mistralai/Mixtral-8x7B-Instruct-v0.1
The Chat Completions CLI enables streaming tokens to stdout by default. To disable streaming, use --no-stream
.
Completions
together completions \
"Large language models are " \
--model mistralai/Mixtral-8x7B-v0.1 \
--max-tokens 512 \
--stop "."
The Completions CLI enables streaming tokens to stdout by default. To disable streaming, use --no-stream
.
Image Generations
together images generate \
"space robots" \
--model stabilityai/stable-diffusion-xl-base-1.0 \
--n 4
The image is opened in the default image viewer by default. To disable this, use --no-show
.
Files
together files --help
together files check example.jsonl
together files upload example.jsonl
together files list
together files retrieve file-6f50f9d1-5b95-416c-9040-0799b2b4b894
together files retrieve-content file-6f50f9d1-5b95-416c-9040-0799b2b4b894
together files delete file-6f50f9d1-5b95-416c-9040-0799b2b4b894
Fine-tuning
together fine-tuning --help
together fine-tuning create \
--model togethercomputer/llama-2-7b-chat \
--training-file file-711d8724-b3e3-4ae2-b516-94841958117d
together fine-tuning list
together fine-tuning retrieve ft-c66a5c18-1d6d-43c9-94bd-32d756425b4b
together fine-tuning list-events ft-c66a5c18-1d6d-43c9-94bd-32d756425b4b
together fine-tuning cancel ft-c66a5c18-1d6d-43c9-94bd-32d756425b4b
together fine-tuning download ft-c66a5c18-1d6d-43c9-94bd-32d756425b4b
Models
together models --help
together models list
Contributing
Refer to the Contributing Guide