Security News
Fluent Assertions Faces Backlash After Abandoning Open Source Licensing
Fluent Assertions is facing backlash after dropping the Apache license for a commercial model, leaving users blindsided and questioning contributor rights.
Additional tools for neuroscience experiments, including:
Everything should work on Windows/Mac/Linux.
Current release:
pip install toon
Development version:
pip install -i https://test.pypi.org/simple/ toon --pre
Or for the latest commit (requires compilation):
pip install git+https://github.com/aforren1/toon
See the demos/ folder for usage examples (note: some require additional packages).
toon
provides a framework for polling from input devices, including common peripherals like mice and keyboards, with the flexibility to handle less-common devices like eyetrackers, motion trackers, and custom devices (see toon/input/
for examples). The goal is to make it easier to use a wide variety of devices, including those with sampling rates >1kHz, with minimal performance impact on the main process.
We use the built-in multiprocessing
module to control a separate process that hosts the device, and, in concert with numpy
, to move data to the main process via shared memory. It seems that under typical conditions, we can expect single read()
operations to take less than 500 microseconds (and more often < 100 us). See demos/bench_plot.py for an example of measuring user-side read performance.
Typical use looks like this:
from toon.input import MpDevice
from mymouse import Mouse
from timeit import default_timer
device = MpDevice(Mouse())
with device:
t1 = default_timer() + 10
while default_timer() < t1:
res = device.read()
# alternatively, unpack immediately
# time, data = device.read()
if res:
time, data = res # unpack (or access via res.time, res.data)
# N-D array of data (0th dim is time)
print(data)
# 1D array of times
print(time)
Creating a custom device is relatively straightforward, though there are a few boxes to check.
from ctypes import c_double
class MyDevice(BaseDevice):
# optional: give a hint for the buffer size (we'll allocate 1 sec worth of this)
sampling_frequency = 500
# this can either be introduced at the class level, or during __init__
shape = (3, 3)
# ctype can be a python type, numpy dtype, or ctype
# including ctypes.Structures
ctype = c_double
# optional. Do not start device communication here, wait until `enter`
def __init__(self):
pass
## Use `enter` and `exit`, rather than `__enter__` and `__exit__`
# optional: configure the device, start communicating
def enter(self):
pass
# optional: clean up resources, close device
def exit(self):
pass
# required
def read(self):
# See demos/ for examples of sharing a time source between the processes
time = self.clock()
# store new data with a timestamp
data = get_data()
return time, data
This device can then be passed to a toon.input.MpDevice
, which preallocates the shared memory and handles other details.
A few things to be aware of for data returned by MpDevice
:
read
, None
is returned.use_views=True
when instantiating the MpDevice
.device.start()
/device.stop()
instead of a context manager.device.check_error()
, though this automatically happens after entering the context manager and when reading.ctypes.Structure
s (see input tests or the example_devices folder for examples).This is still a work in progress, though I think it has some utility as-is. It's a port of the animation component in the Magnum framework, though lacking some of the features (e.g. Track extrapolation, proper handling of time scaling).
Example:
from math import sin, pi
from time import sleep
from timeit import default_timer
import matplotlib.pyplot as plt
from toon.anim import Track, Player
# see toon/anim/easing.py for all available easings
from toon.anim.easing import LINEAR, ELASTIC_IN
class Circle(object):
x = 0
y = 0
circle = Circle()
# list of (time, value)
keyframes = [(0.2, -0.5), (0.5, 0), (3, 0.5)]
x_track = Track(keyframes, easing=LINEAR)
# we can reuse keyframes
y_track = Track(keyframes, easing=ELASTIC_IN)
player = Player(repeats=3)
# directly modify an attribute
player.add(x_track, 'x', obj=circle)
def y_cb(val, obj):
obj.y = val
# modify via callback
player.add(y_track, y_cb, obj=circle)
t0 = default_timer()
player.start(t0)
vals = []
times = []
while player.is_playing:
t = default_timer()
player.advance(t)
times.append(t)
vals.append([circle.x, circle.y])
# sleep(1/60)
plt.plot(times, vals)
plt.show()
Other notes:
player.add()
.The util
module includes high-resolution clocks/timers via QueryPerformanceCounter/Frequency
on Windows, mach_absolute_time
on MacOS, and clock_gettime(CLOCK_MONOTONIC)
on Linux. The class is called MonoClock
, and an instantiation called mono_clock
is created upon import. Usage:
from toon.util import mono_clock, MonoClock
clk = mono_clock # re-use pre-instantiated clock
clk2 = MonoClock(relative=False) # time relative to whenever the system's clock started
t0 = clk.get_time()
Another utility currently included is a priority
function, which tries to improve the determinism of the calling script. This is derived from Psychtoolbox's Priority
(doc here). General usage is:
from toon.util import priority
if not priority(1):
raise RuntimeError('Failed to raise priority.')
# ...do stuff...
priority(0)
The input should be a 0 (no priority/cancel), 1 (higher priority), or 2 (realtime). If the requested level is rejected, the function will return False
. The exact implementational details depend on the host operating system. All implementations disable garbage collection.
SetPriorityClass
and SetThreadPriority
/AvSetMmMaxThreadCharacteristics
.level = 2
only seems to work if running Python as administrator.sched_setscheduler
.level == 2
, locks the calling process's virtual address space into RAM via mlockall
.level > 0
seems to fail unless the user is either superuser, or has the right capability. I've used setcap: sudo setcap cap_sys_nice=eip <path to python>
(disable by passing sudo setcap cap_sys_nice= <path>
). For memory locking, I've used Psychtoolbox's 99-psychtoolboxlimits.conf and added myself to the psychtoolbox group.Your mileage may vary on whether these actually improve latency/determinism. When in doubt, measure! Read the warnings here.
Notes about checking whether parts are working:
mlockall
with cat /proc/{python pid}/status | grep VmLck
top -c -p $(pgrep -d',' -f python)
FAQs
Tools for neuroscience experiments
We found that toon demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Fluent Assertions is facing backlash after dropping the Apache license for a commercial model, leaving users blindsided and questioning contributor rights.
Research
Security News
Socket researchers uncover the risks of a malicious Python package targeting Discord developers.
Security News
The UK is proposing a bold ban on ransomware payments by public entities to disrupt cybercrime, protect critical services, and lead global cybersecurity efforts.