Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

tortreinador

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

tortreinador

A trainer based on Pytorch

  • 0.1.2
  • PyPI
  • Socket score

Maintainers
1

Torch Terinador

A trainer based on pytorch including a train loop for MDN (Mixture Density Network), a data loader, plot line chart and a couple of techniques for avoid over fitting

Installation

This package needs Python>=3.7 and the version of Pytorch used in development is 1.13.1 and cuda11.2, considering the different version of cuda, the package will not install Pytorch automatically. You should check your cuda's version, install the suitable pytorch first. Then, run the command below:

pip install tortreinador 

Quick Start

from tortreinador.utils.plot import plot_line_2
from tortreinador.utils.preprocessing import load_data
from tortreinador.train import TorchTrainer, config_generator
from tortreinador.models.MDN import mdn, Mixture, NLLLoss
from tortreinador.utils.tools import xavier_init
from tortreinador.utils.View import init_weights, split_weights
import torch
import pandas as pd

data = pd.read_excel('')
data['M_total (M_E)'] = data['Mcore (M_J/10^3)'] + data['Menv (M_E)']

# Support index, e.g input_parameters = [0, 1, 2]
input_parameters = [
    'Mass (M_J)',
    'Radius (R_E)',
    'T_sur (K)',
]

output_parameters = [
    'M_total (M_E)',
    'T_int (K)',
    'P_CEB (Mbar)',
    'T_CEB (K)'
]
# Load Data, random status default as 42
t_loader, v_loader, test_x, test_y, s_x, s_y = load_data(data=data, input_parameters=input_parameters,
                                                         output_parameters=output_parameters,
                                                         if_normal=True, if_shuffle=True, batch_size=512, feature_range=(0, 1), if_double=True, n_workers=4)

model = mdn(len(input_parameters), len(output_parameters), 20, 512)
criterion = NLLLoss()
optim = torch.optim.Adam(xavier_init(model), lr=0.0001, weight_decay=0.001)

'''
    Overwrite function 'calculate' 
'''
# class Trainer(TorchTrainer):
#     def calculate(self, x, y, mode='t'):
#         x_o, x_n = x.chunk(2, dim=1)
        
#         pi, mu, sig = model(x_o, x_n)
        
#         loss = self.criterion(pi, mu, sig, y)
#         pdf = mixture(pi, mu, sig)
#         y_pred = pdf.sample()
        
#         metric_per = r2_score(y, y_pred)
        
#         return self._standard_return(loss=loss, metric_per=metric_per, mode=mode, y=y, y_pred=y_pred)

# trainer = Trainer(is_gpu=True, epoch=50, optimizer=optim, model=model, criterion=criterion)


trainer = TorchTrainer(is_gpu=True, epoch=50, optimizer=optim, model=model, criterion=criterion)

save_file_path = '/notebooks/DeepExo/Resource/MDN_ATTN_15_error/'
config = config_generator(save_file_path, warmup_epochs=5, best_metric=0.8, lr_milestones=[12, 22, 36, 67, 75, 89, 106], lr_decay_rate=0.7)
# Training
result = trainer.fit(t_loader, v_loader, **config)


# Plot line chart
result_pd = pd.DataFrame()
result_pd['epoch'] = len(result[0])
result_pd['train_r2_avg'] = result[4]
result_pd['val_r2_avg'] = result[3]

plot_line_2(y_1='train_r2_avg', y_2='val_r2_avg', df=result_pd, fig_size=(10, 6))

# If specify 'mode' in TorchTrainer as 'csv'
saved_result = pd.read_csv('/notebooks/DeepExo/train_log/log_202408280744.csv')
plot_line_2(y_1='train_loss', y_2='val_loss', df=saved_result)

Functions

Please visit https://ardentex.github.io/tortreinador/

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc