transform3d
Handy classes for working with trees of 3d transformations.
Uses scipy.spatial.transform.Rotation
for stable conversions between rotation representations.
install
$ pip3 install transform3d
convention
a_t_b
denotes b relative to a, such that a point
in frame b, p_b
, is transformed to frame a by: p_a = a_t_b @ p_b
(Note that @
is the matmul operator in python.)
This provides easy to read series of transformations:
a_t_d = a_t_b @ b_t_c @ c_t_d
.
usage
import numpy as np
from transform3d import Transform, SceneNode, SceneState
a_t_b = Transform(p=(1, 0, 0), rotvec=(0, 0, 0))
b_t_c = Transform(p=(0, 0, 1), rpy=(0, 0, np.pi / 2))
a_t_c = a_t_b @ b_t_c
c_t_a = a_t_c.inv
p_a = (1, 0, 0)
p_c = c_t_a @ p_a
p_a = np.random.randn(2, 3)
p_c = c_t_a @ p_a
v_a = (1, 0, 0)
v_c = c_t_a.rotate(v_a)
s_a = (1, 0, 0, 1, 0, 0)
s_c = c_t_a.rotate(v_a)
root = SceneNode()
a = SceneNode(parent=root)
b = SceneNode(parent=root)
c = SceneNode(parent=b)
root, a, b, c = SceneNode.n(4)
root.adopt(
a,
b.adopt(c)
)
state = SceneState()
state[a] = Transform(p=(1, 0, 0), rpy=(np.pi, 0, 0))
state[b] = Transform(rotvec=(0, 90, 0), degrees=True)
state[c] = Transform(quat=(0, 0, 0, 1))
c_t_a = c.p(a, state)
c_t_a_desired = Transform(p=(1, 2, 3), R=np.eye(3))
state[b] = b.solve(c, a, c_t_a_desired, state)
assert c.p(a, state).equals(c_t_a_desired)