Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

typeddict

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

typeddict

Use `TypedDict` replace pydantic definitions.

  • 0.3.0
  • PyPI
  • Socket score

Maintainers
1

TypedDict

Use TypedDict replace pydantic definitions.

Why?

from pydantic import BaseModel


class User(BaseModel):
    name: str
    age: int = Field(default=0, ge=0)
    email: Optional[str]


user: User = {"name": "John", "age": 30}  # Type check, error!
print(repr(user))

In index.py or other framework, maybe you write the following code. And then got an type check error in Annotated[Message, ...], because the type of {"message": "..."} is not Message.

class Message(BaseModel):
    message: str


@routes.http.post("/user")
async def create_user(
    ...
) -> Annotated[Message, JSONResponse[200, {}, Message]]:
    ...
    return {"message": "Created successfully!"}

Usage

Use Annotated to provide extra information to pydantic.Field. Other than that, everything conforms to the general usage of TypedDict. Using to_pydantic will create a semantically equivalent pydantic model. You can use it in frameworks like index.py / fastapi / xpresso.

from typing_extensions import Annotated, NotRequired, TypedDict

import typeddict
from typeddict import Extra, Metadata


class User(TypedDict):
    name: str
    age: Annotated[int, Metadata(default=0), Extra(ge=0)]
    email: NotRequired[Annotated[str, Extra(min_length=5, max_length=100)]]


class Book(TypedDict):
    author: NotRequired[User]


user: User = {"name": "John", "age": 30}  # Type check, pass!
print(repr(user))

# Then use it in fastapi / index.py or other frameworks
UserModel = typeddict.to_pydantic(User)
print(repr(UserModel.__signature__))
print(repr(UserModel.parse_obj(user)))

book: Book = {"author": user}  # Type check, pass!
print(repr(book))

# Then use it in fastapi / index.py or other frameworks
BookModel = typeddict.to_pydantic(Book)
print(repr(BookModel.__signature__))
print(repr(BookModel.parse_obj(book)))

cast

Sometimes you may not need a pydantic model, you can directly use typeddict to parse the data.

import typeddict


class User(TypedDict):
    name: str
    age: Annotated[int, Metadata(default=0), Extra(ge=0)]
    email: NotRequired[Annotated[str, Extra(min_length=5, max_length=100)]]


user = typeddict.cast(User, {"name": "John", "age": 30, "unused-info": "....."})
print(repr(user))

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc