Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

venn-abers

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

venn-abers

Venn-ABERS calibration package

  • 1.4.6
  • PyPI
  • Socket score

Maintainers
1

python License: MIT Static Badge GitHub Repo stars

Venn-ABERS calibration

This library contains the Python implementation of Venn-ABERS calibration for binary and multiclass classification problems.

Installation

pip install venn-abers

The method can be applied on top of an underlying scikit-learn algorithm.

Example Usage

from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB

from venn_abers import VennAbersCalibrator

X, y = make_classification(n_samples=1000, n_classes=3, n_informative=10)
X_train, X_test, y_train, y_test = train_test_split(X, y)

clf = GaussianNB()

# Define Venn-ABERS calibrator
va = VennAbersCalibrator(estimator=clf, inductive=True, cal_size=0.2, random_state=101)

# Fit on the training set
va.fit(X_train, y_train)

# Generate probabilities and class predictions on the test set
p_prime = va.predict_proba(X_test)
y_pred = va.predict(X_test)

Examples

Further examples can be found in the github repository https://github.com/ip200/venn-abers in the examples folder:

Citation

If you find this library useful please consider citing:

  • Vovk, Vladimir, Ivan Petej and Valentina Fedorova. "Large-scale probabilistic predictors with and without guarantees of validity." Advances in Neural Information Processing Systems 28 (2015) (arxiv version https://arxiv.org/pdf/1511.00213.pdf)
  • Vovk, Vladimir, Ivan Petej. "Venn-Abers predictors". Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence (2014) (arxiv version https://arxiv.org/abs/1211.0025)
  • Manokhin, Valery. "Multi-class probabilistic classification using inductive and cross Venn–Abers predictors." Conformal and Probabilistic Prediction and Applications, PMLR, 2017.

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc