Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

figurate_numbers

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

figurate_numbers

  • 1.3.0
  • Rubygems
  • Socket score

Version published
Maintainers
1
Created
Source

Figurate Numbers

Gem Version Gem Total Downloads GitHub License

figurate_numbers is a Ruby module that implements 239 infinite number sequences based on the formulas from the wonderful book

Figurate Numbers (2012) by Elena Deza and Michel Deza.

This implementation uses the Enumerator class to deal with INFINITE SEQUENCES.

Following the order of the book, the methods are divided into 3 types according to the spatial dimension (see complete list below):

  1. Plane figurate numbers implemented = 79
  2. Space figurate numbers implemented = 86
  3. Multidimensional figurate numbers implemented = 70
  4. Zoo of figurate-related numbers implemented = 6
  • TOTAL = 241 infinite sequences of figurate numbers implemented

Installation and use

  • gem install figurate_numbers

How to use in Ruby

If the sequence is defined with lazy, to make the numbers explicit we must include the converter method to_a at the end.

require 'figurate_numbers'

## Using take(integer)
FigurateNumbers.pronic_numbers.take(10).to_a

## Storing and iterating
f = FigurateNumbers.centered_octagonal_pyramid_numbers
f.next
f.next
f.next

How to use in Sonic Pi

  1. Locate or download the file in the path lib/figurate_numbers.rb
  2. Drag the file to a buffer in Sonic Pi (this generates the <PATH>)
run_file "<PATH>"

pol_num = FigurateNumbers.polygonal_numbers(8)
80.times do
  play pol_num.next % 12 * 7  # Some mathematical function or transformation
  sleep 0.25
end

List of implemented sequences

  • Note that = means that you can call the same sequence with different names.

1. Plane Figurate Numbers

  1. polygonal_numbers(m)
  2. triangular_numbers
  3. square_numbers
  4. pentagonal_numbers
  5. hexagonal_numbers
  6. heptagonal_numbers
  7. octagonal_numbers
  8. nonagonal_numbers
  9. decagonal_numbers
  10. hendecagonal_numbers
  11. dodecagonal_numbers
  12. tridecagonal_numbers
  13. tetradecagonal_numbers
  14. pentadecagonal_numbers
  15. hexadecagonal_numbers
  16. heptadecagonal_numbers
  17. octadecagonal_numbers
  18. nonadecagonal_numbers
  19. icosagonal_numbers
  20. icosihenagonal_numbers
  21. icosidigonal_numbers
  22. icositrigonal_numbers
  23. icositetragonal_numbers
  24. icosipentagonal_numbers
  25. icosihexagonal_numbers
  26. icosiheptagonal_numbers
  27. icosioctagonal_numbers
  28. icosinonagonal_numbers
  29. triacontagonal_numbers
  30. centered_triangular_numbers
  31. centered_square_numbers = diamond_numbers (equality only by quantity)
  32. centered_pentagonal_numbers
  33. centered_hexagonal_numbers
  34. centered_heptagonal_numbers
  35. centered_octagonal_numbers
  36. centered_nonagonal_numbers
  37. centered_decagonal_numbers
  38. centered_hendecagonal_numbers
  39. centered_dodecagonal_numbers = star_numbers (equality only by quantity)
  40. centered_tridecagonal_numbers
  41. centered_tetradecagonal_numbers
  42. centered_pentadecagonal_numbers
  43. centered_hexadecagonal_numbers
  44. centered_heptadecagonal_numbers
  45. centered_octadecagonal_numbers
  46. centered_nonadecagonal_numbers
  47. centered_icosagonal_numbers
  48. centered_icosihenagonal_numbers
  49. centered_icosidigonal_numbers
  50. centered_icositrigonal_numbers
  51. centered_icositetragonal_numbers
  52. centered_icosipentagonal_numbers
  53. centered_icosihexagonal_numbers
  54. centered_icosiheptagonal_numbers
  55. centered_icosioctagonal_numbers
  56. centered_icosinonagonal_numbers
  57. centered_triacontagonal_numbers
  58. centered_mgonal_numbers(m)
  59. pronic_numbers = heteromecic_numbers = oblong_numbers
  60. polite_numbers
  61. impolite_numbers
  62. cross_numbers
  63. aztec_diamond_numbers
  64. polygram_numbers(m) = centered_star_polygonal_numbers(m)
  65. pentagram_numbers
  66. gnomic_numbers
  67. truncated_triangular_numbers
  68. truncated_square_numbers
  69. truncated_pronic_numbers
  70. truncated_centered_pol_numbers(m) = truncated_centered_mgonal_numbers(m)
  71. truncated_centered_triangular_numbers
  72. truncated_centered_square_numbers
  73. truncated_centered_pentagonal_numbers
  74. truncated_centered_hexagonal_numbers = truncated_hex_numbers
  75. generalized_mgonal_numbers(m, left_index = 0)
  76. generalized_pentagonal_numbers(left_index = 0)
  77. generalized_hexagonal_numbers(left_index = 0)
  78. generalized_centered_pol_numbers(m, left_index = 0)
  79. generalized_pronic_numbers(left_index = 0)

2. Space Figurate Numbers

  1. r_pyramidal_numbers(r)
  2. triangular_pyramidal_numbers = tetrahedral_numbers
  3. square_pyramidal_numbers = pyramidal_numbers
  4. pentagonal_pyramidal_numbers
  5. hexagonal_pyramidal_numbers
  6. heptagonal_pyramidal_numbers
  7. octagonal_pyramidal_numbers
  8. nonagonal_pyramidal_numbers
  9. decagonal_pyramidal_numbers
  10. hendecagonal_pyramidal_numbers
  11. dodecagonal_pyramidal_numbers
  12. tridecagonal_pyramidal_numbers
  13. tetradecagonal_pyramidal_numbers
  14. pentadecagonal_pyramidal_numbers
  15. hexadecagonal_pyramidal_numbers
  16. heptadecagonal_pyramidal_numbers
  17. octadecagonal_pyramidal_numbers
  18. nonadecagonal_pyramidal_numbers
  19. icosagonal_pyramidal_numbers
  20. icosihenagonal_pyramidal_numbers
  21. icosidigonal_pyramidal_numbers
  22. icositrigonal_pyramidal_numbers
  23. icositetragonal_pyramidal_numbers
  24. icosipentagonal_pyramidal_numbers
  25. icosihexagonal_pyramidal_numbers
  26. icosiheptagonal_pyramidal_numbers
  27. icosioctagonal_pyramidal_numbers
  28. icosinonagonal_pyramidal_numbers
  29. triacontagonal_pyramidal_numbers
  30. triangular_tetrahedral_numbers [finite]
  31. triangular_square_pyramidal_numbers [finite]
  32. square_tetrahedral_numbers [finite]
  33. square_square_pyramidal_numbers [finite]
  34. tetrahedral_square_pyramidal_number [finite]
  35. cubic_numbers = perfect_cube_numbers != hex_pyramidal_numbers (equality only by quantity)
  36. tetrahedral_numbers
  37. octahedral_numbers
  38. dodecahedral_numbers
  39. icosahedral_numbers
  40. truncated_tetrahedral_numbers
  41. truncated_cubic_numbers
  42. truncated_octahedral_numbers
  43. stella_octangula_numbers
  44. centered_cube_numbers
  45. rhombic_dodecahedral_numbers
  46. hauy_rhombic_dodecahedral_numbers
  47. centered_tetrahedron_numbers = centered_tetrahedral_numbers
  48. centered_square_pyramid_numbers = centered_pyramid_numbers
  49. centered_mgonal_pyramid_numbers(m)
  50. centered_pentagonal_pyramid_numbers != centered_octahedron_numbers (equality only in quantity)
  51. centered_hexagonal_pyramid_numbers
  52. centered_heptagonal_pyramid_numbers
  53. centered_octagonal_pyramid_numbers
  54. centered_octahedron_numbers
  55. centered_icosahedron_numbers = centered_cuboctahedron_numbers
  56. centered_dodecahedron_numbers
  57. centered_truncated_tetrahedron_numbers
  58. centered_truncated_cube_numbers
  59. centered_truncated_octahedron_numbers
  60. centered_mgonal_pyramidal_numbers(m)
  61. centered_triangular_pyramidal_numbers
  62. centered_square_pyramidal_numbers
  63. centered_pentagonal_pyramidal_numbers
  64. centered_hexagonal_pyramidal_numbers = hex_pyramidal_numbers
  65. centered_heptagonal_pyramidal_numbers
  66. centered_octagonal_pyramidal_numbers
  67. centered_nonagonal_pyramidal_numbers
  68. centered_decagonal_pyramidal_numbers
  69. centered_hendecagonal_pyramidal_numbers
  70. centered_dodecagonal_pyramidal_numbers
  71. hexagonal_prism_numbers
  72. mgonal_prism_numbers(m)
  73. generalized_mgonal_pyramidal_numbers(m, left_index = 0)
  74. generalized_pentagonal_pyramidal_numbers(left_index = 0)
  75. generalized_hexagonal_pyramidal_numbers(left_index = 0)
  76. generalized_cubic_numbers(left_index = 0)
  77. generalized_octahedral_numbers(left_index = 0)
  78. generalized_icosahedral_numbers(left_index = 0)
  79. generalized_dodecahedral_numbers(left_index = 0)
  80. generalized_centered_cube_numbers(left_index = 0)
  81. generalized_centered_tetrahedron_numbers(left_index = 0)
  82. generalized_centered_square_pyramid_numbers(left_index = 0)
  83. generalized_rhombic_dodecahedral_numbers(left_index = 0)
  84. generalized_centered_mgonal_pyramidal_numbers(m, left_index = 0)
  85. generalized_mgonal_prism_numbers(m, left_index = 0)
  86. generalized_hexagonal_prism_numbers(left_index = 0)

3. Multidimensional figurate numbers

  1. pentatope_numbers = hypertetrahedral_numbers = triangulotriangular_numbers
  2. k_dimensional_hypertetrahedron_numbers(k) = k_hypertetrahedron_numbers(k) = regular_k_polytopic_numbers(k) = figurate_numbers_of_order_k(k)
  3. five_dimensional_hypertetrahedron_numbers
  4. six_dimensional_hypertetrahedron_numbers
  5. biquadratic_numbers
  6. k_dimensional_hypercube_numbers(k) = k_hypercube_numbers(k)
  7. five_dimensional_hypercube_numbers
  8. six_dimensional_hypercube_numbers
  9. hyperoctahedral_numbers = hexadecachoron_numbers = four_cross_polytope_numbers = four_orthoplex_numbers
  10. hypericosahedral_numbers = tetraplex_numbers = polytetrahedron_numbers = hexacosichoron_numbers
  11. hyperdodecahedral_numbers = hecatonicosachoron_numbers = dodecaplex_numbers = polydodecahedron_numbers
  12. polyoctahedral_numbers = icositetrachoron_numbers = octaplex_numbers = hyperdiamond_numbers
  13. four_dimensional_hyperoctahedron_numbers
  14. five_dimensional_hyperoctahedron_numbers
  15. six_dimensional_hyperoctahedron_numbers
  16. seven_dimensional_hyperoctahedron_numbers
  17. eight_dimensional_hyperoctahedron_numbers
  18. nine_dimensional_hyperoctahedron_numbers
  19. ten_dimensional_hyperoctahedron_numbers
  20. k_dimensional_hyperoctahedron_numbers(k) = k_cross_polytope_numbers(k)
  21. four_dimensional_mgonal_pyramidal_numbers(m) = mgonal_pyramidal_numbers_of_the_second_order(m)
  22. four_dimensional_square_pyramidal_numbers
  23. four_dimensional_pentagonal_pyramidal_numbers
  24. four_dimensional_hexagonal_pyramidal_numbers
  25. four_dimensional_heptagonal_pyramidal_numbers
  26. four_dimensional_octagonal_pyramidal_numbers
  27. four_dimensional_nonagonal_pyramidal_numbers
  28. four_dimensional_decagonal_pyramidal_numbers
  29. four_dimensional_hendecagonal_pyramidal_numbers
  30. four_dimensional_dodecagonal_pyramidal_numbers
  31. k_dimensional_mgonal_pyramidal_numbers(k, m) = mgonal_pyramidal_numbers_of_the_k_2_th_order(k, m)
  32. five_dimensional_mgonal_pyramidal_numbers(m)
  33. five_dimensional_square_pyramidal_numbers
  34. five_dimensional_pentagonal_pyramidal_numbers
  35. five_dimensional_hexagonal_pyramidal_numbers
  36. five_dimensional_heptagonal_pyramidal_numbers
  37. five_dimensional_octagonal_pyramidal_numbers
  38. six_dimensional_mgonal_pyramidal_numbers(m)
  39. six_dimensional_square_pyramidal_numbers
  40. six_dimensional_pentagonal_pyramidal_numbers
  41. six_dimensional_hexagonal_pyramidal_numbers
  42. six_dimensional_heptagonal_pyramidal_numbers
  43. six_dimensional_octagonal_pyramidal_numbers
  44. centered_biquadratic_numbers
  45. k_dimensional_centered_hypercube_numbers(k)
  46. five_dimensional_centered_hypercube_numbers
  47. six_dimensional_centered_hypercube_numbers
  48. centered_polytope_numbers
  49. k_dimensional_centered_hypertetrahedron_numbers(k)
  50. five_dimensional_centered_hypertetrahedron_numbers(k)
  51. six_dimensional_centered_hypertetrahedron_numbers(k)
  52. centered_hyperoctahedral_numbers = orthoplex_numbers
  53. nexus_numbers(k)
  54. k_dimensional_centered_hyperoctahedron_numbers(k)
  55. five_dimensional_centered_hyperoctahedron_numbers
  56. six_dimensional_centered_hyperoctahedron_numbers
  57. generalized_pentatope_numbers(left_index = 0)
  58. generalized_k_dimensional_hypertetrahedron_numbers(k = 5, left_index = 0)
  59. generalized_biquadratic_numbers(left_index = 0)
  60. generalized_k_dimensional_hypercube_numbers(k = 5, left_index = 0)
  61. generalized_hyperoctahedral_numbers(left_index = 0)
  62. generalized_k_dimensional_hyperoctahedron_numbers(k = 5, left_index = 0) [even or odd dimension only changes sign]
  63. generalized_hyperdodecahedral_numbers(left_index = 0)
  64. generalized_hypericosahedral_numbers(left_index = 0)
  65. generalized_polyoctahedral_numbers(left_index = 0)
  66. generalized_k_dimensional_mgonal_pyramidal_numbers(k, m, left_index = 0)
  67. generalized_k_dimensional_centered_hypercube_numbers(k, left_index = 0)
  68. generalized_k_dimensional_centered_hypertetrahedron_numbers(k, left_index = 0)[provisional symmetry]
  69. generalized_k_dimensional_centered_hyperoctahedron_numbers(k, left_index = 0)[provisional symmetry]
  70. generalized_nexus_numbers(k, left_index = 0) [even or odd dimension only changes sign]
  1. cuban_numbers = cuban_prime_numbers
  2. quartan_numbers [Needs to improve the algorithmic complexity for n > 70]
  3. pell_numbers
  4. carmichael_numbers [Needs to improve the algorithmic complexity for n > 20]
  5. stern_prime_numbers(infty = false) [Quick calculations up to 8 terms]
  6. apocalyptic_numbers

Errata

  • Chapter 1, formula in the table on page 6 says:

    NameFormula
    Square1/2 (n^2 - 0 * n)

    It should be:

    NameFormula
    Square1/2 (2n^2 - 0 * n)
  • Chapter 1, formula in the table on page 51 says:

    NameFormula
    Cent. icosihexagonal1/3n^2 - 13 * n + 1546, 728, 936, 1170

    It should be:

    NameFormula
    Cent. icosihexagonal1/3n^2 - 13 * n + 1547, 729, 937, 1171
  • Chapter 1, formula in the table on page 51 says:

    NameFormula
    Cent. icosiheptagonal972

    It should be:

    NameFormula
    Cent. icosiheptagonal973
  • Chapter 1, formula in the table on page 51 says:

    NameFormula
    Cent. icosioctagonal84

    It should be:

    NameFormula
    Cent. icosioctagonal85
  • Chapter 1, page 65 (polite numbers) says:

    inpolite numbers

    It should read:

    impolite numbers

  • Chapter 1, formula (truncated centered pentagonal numbers) on page 72 says:

    TCSS_5(n) = (35n^2 - 55n) / 2 + 3

    It should be:

    TCSS_5(n) = (35n^2 - 55n) / 2 + 11

  • Chapter 2, formula of octagonal pyramidal number on page 92 says:

    n(n+1)(6n-1) / 6

    It should be:

    n(n+1)(6n-3) / 6

  • Chapter 2, page 140 says:

    centered square pyramidal numbers are 1, 6, 19, 44, 85, 111, 146, 231, ...

    This sequence must exclude the number 111:

    centered square pyramidal numbers are 1, 6, 19, 44, 85, 111, 146, 231, ...

  • Chapter 2, page 155 (generalized centered tetrahedron numbers) says:

    S_3^3(n) = ((2n - 1)(n^2 + n + 3)) / 3

    Formula must have a negative sign:

    S_3^3(n) = ((2n - 1)(n^2 - n + 3)) / 3

  • Chapter 2, page 156 (generalized centered square pyramid numbers) says:

    S_4^3(n) = ((2n - 1) * (n^2 - n + 2)^2) / 3

    Formula must write:

    S_4^3(n) = ((2n - 1) * (n^2 - n + 2)) / 2

  • Chapter 3, page 188 (hyperoctahedral numbers) says:

    hexadecahoron numbers

    It should read:

    hexadecachoron numbers

  • Chapter 3, page 190 (hypericosahedral numbers) says:

    hexacisihoron numbers

    It should read:

    hexacosichoron numbers

FAQs

Package last updated on 17 Jul 2024

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc