Socket
Book a DemoInstallSign in
Socket

lutaml-model

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

lutaml-model

0.7.7
bundlerRubygems
Version published
Maintainers
1
Created
Source

= LutaML Ruby modeller

image:https://img.shields.io/gem/v/lutaml-model.svg[RubyGems Version] image:https://img.shields.io/github/license/lutaml/lutaml-model.svg[License] image:https://github.com/lutaml/lutaml-model/actions/workflows/rake.yml/badge.svg["Build", link="https://github.com/lutaml/lutaml-model/actions/workflows/rake.yml"] image:https://github.com/lutaml/lutaml-model/actions/workflows/dependent-tests.yml/badge.svg["Dependent tests", link="https://github.com/lutaml/lutaml-model/actions/workflows/dependent-tests.yml"]

== Purpose

Lutaml::Model is the Ruby implementation of the LutaML modeling methodology, for:

  • creating information models in the LutaML language (or its Ruby DSL)
  • serializing and deserializing LutaML information models
  • accessing data instances of LutaML information models
  • documenting LutaML information models

It provides simple, flexible and comprehensive mechanisms for defining information models with attributes and types, and the serialization of them to/from serialization formats including Hash, JSON, XML, YAML, and TOML.

For serialization formats, it uses an adapter pattern to support multiple libraries for each format, providing flexibility and extensibility for your data modeling needs.

NOTE: The Lutaml::Model modeling Ruby DSL was originally designed to be mostly compatible with the data modeling DSL of https://www.shalerb.org[Shale], a data modeller for Ruby. Lutaml::Model is meant to address advanced needs not currently addressed by Shale. Instructions on how to migrate from Shale to Lutaml::Model are provided in <>.

== Features

  • Define models with attributes and types
  • Serialize and deserialize models to/from Hash, JSON, XML, YAML, and TOML
  • Support for multiple serialization libraries (e.g., toml-rb, tomlib)
  • Configurable adapters for different serialization formats
  • Support for collections and default values
  • Custom serialization/deserialization methods
  • XML namespaces and mappings
  • Generate serialization schemas from model definitions (<>)
  • Import serialization schemas to define models (<>)
  • Create custom adapters for additional data formats (see <>)
  • Dynamically modify model attribute types using registers (see <>)

== Data modeling in a nutshell

Data modeling is the process of creating a data model for the data to be stored in a database or used in an application. It helps in defining the structure, relationships, and constraints of the data, making it easier to manage and use.

Lutaml::Model simplifies data modeling in Ruby by allowing you to define models with attributes and serialize/deserialize them to/from various serialization formats seamlessly.

The Lutaml::Model data modelling approach is as follows:

.Modeling relationships of a LutaML Model [source]

                   LutaML Model
                         │
                Has many attributes
                         │
                         ▼
                     Attribute
                         │
                    Has type of
                         │
              ┌──────────┴──────────┐
              │                     │
            Model              Value (Leaf)
              │                     │
   Has many attributes    Contains one basic value
              │                     │
      ┌───────┴─────┐        ┌──────┴──────┐
      │             │        │             │
    Model      Value (Leaf)  String       Integer
      │                      Date         Boolean
      │                      Time         Float

Has many attributes ... ... │ ▼ (Recursive pattern continues...)

.Example of LutaML Model instance with assigned values

[source]

Studio (Model) ├── name (Value: String) = "Pottery Studio" ├── address (Model) │ ├── street (Value: String) = "123 Clay St" │ ├── city (Value: String) = "Ceramics City" │ └── postcode (Value: String) = "12345" ├── established (Value: Date) = 2020-01-01 └── kilns (Model) ├── count (Value: Integer) = 3 └── temperature (Value: Float) = 1200.0

====

.Modeling relationships of a LutaML Model to serialization models [source]

╔═══════════════════════╗ ╔════════════════════════════╗ ║ LutaML Core Model ║ ║ Serialization Models ║ ╚═══════════════════════╝ ╚════════════════════════════╝

╭┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄╮ ╭┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄╮ ┆ Model ┆ ┆ XML Model ┆ ┆ │ ┆ ┌────────────────┐ ┆ │ ┆ ┆ ┌────────┴──┐ ┆ │ │ ┆ ┌──────┴──────┐ ┆ ┆ │ │ ┆ │ Model │ ┆ │ │ ┆ ┆ Models Value Types ┆──►│ Transformation │ ┆ Models Value Types ┆ ┆ │ │ ┆ │ & │ ┆ │ │ ┆ ┆ │ │ ┆ │ Mapping Rules │ ┆ │ │ ┆ ┆ │ ┌──────┴──┐ ┆ │ │ ┆ ┌────┴────┐ ┌─┴─┐ ┆ ┆ │ │ │ ┆ └────────────────┘ ┆ │ │ │ │ ┆ ┆ │ String Integer ┆ │ ┆ Element Value xs:string ┆ ┆ │ Date Float ┆ │ ┆ Attribute Type xs:date ┆ ┆ │ Time Boolean ┆ ├──────────►┆ xs:boolean ┆ ┆ │ ┆ │ ┆ xs:anyURI ┆ ┆ └──────┐ ┆ │ ╰┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄╯ ┆ │ ┆ │ ┆ Contains ┆ │ ╭┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄╮ ┆ more Models ┆ │ ┆ JSON Model ┆ ┆ (recursive) ┆ │ ┆ │ ┆ ┆ ┆ │ ┆ ┌──────┴──────┐ ┆ ╰┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄╯ └──────────►┆ │ │ ┆ ┆ Models Value Types ┆ ┆ │ │ ┆ ┆ │ │ ┆ ┆ ┌────┴───┐ ┌───┴──┐ ┆ ┆ │ │ │ │ ┆ ┆ object array number string ┆ ┆ value boolean null ┆ ╰┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄╯

.Model transformation of a LutaML Model to another LutaML Model [source]

╔═══════════════════════╗ ╔══════════════════╗ ╔═══════════════════════╗ ║LutaML Model Class FOO ║ ║LutaML Transformer║ ║LutaML Model Class BAR ║ ╚═══════════════════════╝ ╚══════════════════╝ ╚═══════════════════════╝

╭┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄╮ ╭┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄╮ ┆ Model ┆ ┆ Model ┆ ┆ │ ┆ ┌────────────────┐ ┆ │ ┆ ┆ ┌────────┴──┐ ┆ │ │ ┆ ┌────────┴──┐ ┆ ┆ │ │ ┆ │ Model │ ┆ │ │ ┆ ┆ Models Value Types ┆───►│ Transformation │───►┆ Models Value Types ┆ ┆ │ │ ┆◄───│ & │◄───┆ │ │ ┆ ┆ │ │ ┆ │ Mapping Rules │ ┆ │ │ ┆ ┆ │ ┌──────┴──┐ ┆ │ │ ┆ │ ┌──────┴──┐ ┆ ┆ │ │ │ ┆ └────────────────┘ ┆ │ │ │ ┆ ┆ │ String Integer ┆ ┆ │ String Integer ┆ ┆ │ Date Float ┆ ┆ │ Date Float ┆ ┆ │ Time Boolean ┆ ┆ │ Time Boolean ┆ ┆ │ ┆ ┆ │ ┆ ┆ └──────┐ ┆ ┆ └──────┐ ┆ ┆ │ ┆ ┆ │ ┆ ┆ Contains ┆ ┆ Contains ┆ ┆ more Models ┆ ┆ more Models ┆ ┆ (recursive) ┆ ┆ (recursive) ┆ ┆ ┆ ┆ ┆ ╰┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄╯ ╰┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄╯

.The Value class, transformation, and serialization formats [source]

╔═══════════════════════╗ ╔═══════════════════════╗ ║LutaML Value Class FOO ║ ║ Serialization Value ║ ╚═══════════════════════╝ ╚═══════════════════════╝ ╭┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄╮ ╭┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄╮ ┆ ┌───────────────┐ ┆ ┆ ┌───────────────┐ ┆ ┆ │ Value │ ┆ ┌──────────────────┐ ┆ │ XML Value │ ┆ ┆ └───────────────┘ ┆──►│ Value Serializer │──►┆ └───────────────┘ ┆ ┆ ┌───────────────┐ ┆ └──────────────────┘ ┆ ┌───────────────┐ ┆ ┆ │Primitive Types│ ┆ ┆ │XML Value Types│ ┆ ┆ └───────────────┘ ┆ ┆ └───────────────┘ ┆ ┆ ┌───┘ ┆ ┆ ┌───┘ ┆ ┆ ├─ string ┆ ┆ ├─ xs:string ┆ ┆ ├─ integer ┆ ┆ ├─ xs:integer ┆ ┆ ├─ float ┆ ┆ ├─ xs:decimal ┆ ┆ ├─ boolean ┆ ┆ ├─ xs:boolean ┆ ┆ ├─ date ┆ ┆ ├─ xs:date ┆ ┆ ├─ time_without_date ┆ ┆ ├─ xs:time ┆ ┆ ├─ date_time ┆ ┆ ├─ xs:dateTime ┆ ┆ ├─ time ┆ ┆ ├─ xs:decimal ┆ ┆ ├─ decimal ┆ ┆ ├─ xs:anyType ┆ ┆ └─ hash ┆ ┆ └─ (complex element) ┆ ╰┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄╯ ╰┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄╯ │ ▼ ┌───────────────────┐ │ Value Transformer │ └───────────────────┘ │ ▼ ╔═══════════════════════╗ ║LutaML Value Class BAR ║ ╚═══════════════════════╝ ╭┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄╮ ┆ ┌───────────────┐ ┆ ┆ │ Value │ ┆ ┆ └───────────────┘ ┆ ┆ ┌───────────────┐ ┆ ┆ │Primitive Types│ ┆ ┆ └───────────────┘ ┆ ┆ ┌───┘ ┆ ┆ ├─ string ┆ ┆ ├─ integer ┆ ┆ ├─ float ┆ ┆ ├─ boolean ┆ ┆ ├─ date ┆ ┆ ├─ time_without_date ┆ ┆ ├─ date_time ┆ ┆ ├─ time ┆ ┆ ├─ decimal ┆ ┆ └─ hash ┆ ╰┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄╯

.Example of LutaML Model instance transformed into a serialization model and serialized to JSON

[source]

╔═════════════════════╗ ╔═════════════════════╗ ╔═════════════════════╗ ║ Studio (Core Model) ║ ║ JSON Model ║ ║ Serialized JSON ║ ╚═════════════════════╝ ╚═════════════════════╝ ╚═════════════════════╝

name: "Studio 1" ┌─► { ┌─► { address: │ "name": "...", │ "name": "Studio 1", ├── street: "..." │ "address": { │ "address": { └── city: "..." │ "street": "...", │ "street": "...", kilns: ──┤ "city": "..." ──┤ "city": "..." ├── count: 3 │ }, │ }, └── temp: 1200 │ "kilnsCount": ..., │ "kilnsCount": 3, │ "kilnsTemp": ... │ "kilnsTemp": 1200 └─► } └─► }

====

== Installation

Add this line to your application's Gemfile:

[source,ruby]

gem 'lutaml-model'

And then execute:

[source,shell]

bundle install

Or install it yourself as:

[source,shell]

gem install lutaml-model

== Components

LutaML provides the following set of components to model information in a structured way.

  • <<model-definition,Basic models>>
  • <<attribute-definition,Attributes in models>>
  • <<value-definition,Values assigned to attributes>>
  • <<collection-definition,Collections of models>>

[[model-definition]] == Model

=== General

A LutaML model is used to represent a class of information, of which a model instance is a set of information representing a coherent concept.

There are two ways to define an information model in Lutaml::Model:

  • Inheriting from the Lutaml::Model::Serializable class
  • Including the Lutaml::Model::Serialize module

=== Definition

[[define-through-inheritance]] ==== Through inheritance

The simplest way to define a model is to create a class that inherits from Lutaml::Model::Serializable.

The attribute class method is used to define attributes.

[source,ruby]

require 'lutaml/model'

class Kiln < Lutaml::Model::Serializable attribute :brand, :string attribute :capacity, :integer attribute :temperature, :integer end

[[define-through-inclusion]] ==== Through inclusion

If the model class already has a super class that it inherits from, the model can be extended using the Lutaml::Model::Serialize module.

[source,ruby]

require 'lutaml/model'

class Kiln < SomeSuperClass include Lutaml::Model::Serialize

attribute :brand, :string attribute :capacity, :integer attribute :temperature, :integer end

[[model-inheritance]] === Inheritance

A model can inherit from another model to inherit all attributes and methods of the parent model, allowing for code reusability and a clear model hierarchy.

Syntax:

[source,ruby]

class Superclass < Lutaml::Model::Serializable

attribute ...

serialization blocks

end

class Subclass < Superclass

attributes are additive

serialization blocks are replaced

end

An inherited model has the following characteristics:

  • All attributes are inherited from the parent model.

  • Additional calls to attribute in the child model are additive, unless the attribute name is the same as an attribute in the parent model.

  • Serialization blocks, such as xml and key_value are replaced when defined.

** In order to selectively import serialization mapping rules from the parent model, the import_model_mappings method can be used (see <<import_model_mappings>>).

=== Comparison

A Serialize / Serializable object can be compared with another object of the same class using the == operator. This is implemented through the ComparableModel module.

Two objects are considered equal if they have the same class and all their attributes are equal. This behavior differs from the typical Ruby behavior, where two objects are considered equal only if they have the same object ID.

NOTE: Two Serialize objects will have the same hash value if they have the same class and all their attributes are equal.

[source,ruby]

a = Kiln.new(brand: 'Kiln 1', capacity: 100, temperature: 1050) b = Kiln.new(brand: 'Kiln 1', capacity: 100, temperature: 1050) a == b

true

a.hash == b.hash

true

[[value-definition]] == Value types

=== General types

Lutaml::Model supports the following attribute value types.

Every type has a corresponding Ruby class and a serialization format type.

.Mapping between Lutaml::Model::Type classes, Ruby equivalents and serialization format types |=== | Lutaml::Model::Type | Ruby class | XML | JSON | YAML | Example value

| :string | String | xs:string | string | string | "text" | :integer | Integer | xs:integer | number | integer | 42 | :float | Float | xs:decimal | number | float | 3.14 | :boolean | TrueClass/FalseClass | xs:boolean | boolean | boolean | true, false | :date | Date | xs:date | string | string | 2024-01-01 (JSON/YAML "2024-01-01") | :time_without_date | Time | xs:time | string | string | "12:34:56" | :date_time | DateTime | xs:dateTime | string | string | "2024-01-01T12:00:00+00:00" | :time | Time | xs:dateTime | string | string | "2024-01-01T12:00:00+00:00" | :decimal (optional) | BigDecimal | xs:decimal | number | float | 123.45 | :hash | Hash | complex element | object | map | {key: "value"} | (nil value) | nil | xs:anyType | null | null | null // | class | Custom class | complex element | object | map | CustomObject // | collection: true | Array of type | repeated elements | array | sequence | [obj1, obj2] // | any

|===

=== Decimal type

WARNING: Decimal is an optional feature.

The Decimal type is a value type that is disabled by default.

NOTE: The reason why the Decimal type is disabled by default is that the BigDecimal class became optional to the standard Ruby library from Ruby 3.4 onwards. The Decimal type is only enabled when the bigdecimal library is loaded.

The following code needs to be run before using (and parsing) the Decimal type:

[source,ruby]

require 'bigdecimal'

If the bigdecimal library is not loaded, usage of the Decimal type will raise a Lutaml::Model::TypeNotSupportedError.

=== Custom type

A custom class can be used as an attribute type. The custom class must inherit from Lutaml::Model::Type::Value or a class that inherits from it.

A class inheriting from the Value class carries the attribute value which stores the one-and-only "true" value that is independent of serialization formats.

The minimum requirement for a custom class is to implement the following methods:

self.cast(value):: Assignment of an external value to the Value class to be set as value. Casts the value to the custom type.

self.serialize(value):: Serializes the custom type to an object (e.g. a string). Takes the internal value and converts it into an output suitable for serialization.

.Using a custom value type to normalize a postcode with minimal methods [example]

[source,ruby]

class FiveDigitPostCode < Lutaml::Model::Type::String def self.cast(value) value = value.to_s if value.is_a?(Integer)

unless value.is_a?(::String)
  raise Lutaml::Model::InvalidValueError, "Invalid value for type 'FiveDigitPostCode'"
end

# Pad zeros to the left
value.rjust(5, '0')

end

def self.serialize(value) value end end

class Studio < Lutaml::Model::Serializable attribute :postcode, FiveDigitPostCode end

====

=== Serialization of custom types

The serialization of custom types can be made to differ per serialization format by defining methods in the class definitions. This requires additional methods than the minimum required for a custom class (i.e. self.cast(value) and self.serialize(value)).

This is useful in the case when different serialization formats of the same model expect differentiated value representations.

The methods that can be overridden are named:

self.from_{format}(serialized_string):: Deserializes a string of the serialization format and returns the object to be assigned to the Value class' value.

to_{format}:: Serializes the object to a string of the serialization format.

The {format} part of the method name is the serialization format in lowercase (e.g. hash, json, xml, yaml, toml).

.Using custom serialization methods to handle a high-precision date-time type [example]

Suppose in XML we handle a high-precision date-time type that requires custom serialization methods, but other formats such as JSON do not support this type.

For instance, in the normal DateTime class, the serialized string is 2012-04-07T01:51:37+02:00, and the high-precision format is 2012-04-07T01:51:37.112+02:00.

We create HighPrecisionDateTime class is a custom class that inherits from Lutaml::Model::Type::DateTime.

[source,ruby]

class HighPrecisionDateTime < Lutaml::Model::Type::DateTime

Inherit the self.cast(value) and self.serialize(value) methods

from Lutaml::Model::Type::DateTime

The format looks like this 2012-04-07T01:51:37.112+02:00

def self.from_xml(xml_string) ::DateTime.parse(xml_string) end

The %L adds milliseconds to the time

def to_xml value.strftime('%Y-%m-%dT%H:%M:%S.%L%:z') end end

class Ceramic < Lutaml::Model::Serializable attribute :kiln_firing_time, HighPrecisionDateTime xml do root 'ceramic' map_element 'kilnFiringTime', to: :kiln_firing_time # ... end end

An XML snippet with the high-precision date-time type:

[source,xml]

2012-04-07T01:51:37.112+02:00 ----

When loading the XML snippet, the HighPrecisionDateTime class will be used to parse the high-precision date-time string.

However, when serializing to JSON, the value will have the high-precision part lost due to the inability of JSON to handle high-precision date-time.

[source,ruby]

c = Ceramic.from_xml(xml) #<Ceramic:0x0000000104ac7240 @kiln_firing_time=#<HighPrecisionDateTime:0x0000000104ac7240 @value=2012-04-07 01:51:37.112000000 +0200>> c.to_json

{"kilnFiringTime":"2012-04-07T01:51:37+02:00"}

====

[[attribute-definition]] == Attributes

=== Basic attributes

An attribute is the basic building block of a model. It is a named value that stores a single piece of data (which may be one or multiple pieces of data).

An attribute only accepts the type of value defined in the attribute definition.

The attribute value type can be one of the following:

  • Value (inherits from Lutaml::Model::Value)
  • Model (inherits from Lutaml::Model::Serializable)

Syntax:

[source,ruby]

attribute :name_of_attribute, Type

Where,

name_of_attribute:: The defined name of the attribute. Type:: The type of the attribute.

.Using the attribute class method to define simple attributes [example]

[source,ruby]

class Studio < Lutaml::Model::Serializable attribute :name, :string attribute :address, :string attribute :established, :date end

[source,ruby]

s = Studio.new(name: 'Pottery Studio', address: '123 Clay St', established: Date.new(2020, 1, 1)) puts s.name #=> "Pottery Studio" puts s.address #=> "123 Clay St" puts s.established #=> <Date: 2020-01-01>

====

==== Restricting the value of an attribute

The restrict class method is used to update or refine the validation rules for an attribute that has already been defined. This allows you to apply additional or stricter constraints to an existing attribute without redefining it.

.Using the restrict class method to update the options of an existing attribute [example]

[source,ruby]

class Studio < Lutaml::Model::Serializable attribute :name, :string restrict :name, collection: 1..3, pattern: /[A-Za-z]+/ end

====

.Apply different restrictions to the existing attribute in multiple subclasses [example]

[source,ruby]

class Document < Lutaml::Model::Serializable attribute :status, :string end

class DraftDocument < Document

Only allow "draft" or "in_review" as valid statuses for drafts

restrict :status, values: %w[draft in_review] end

class PublishedDocument < Document

Only allow "published" or "archived" as valid statuses for published documents

restrict :status, values: %w[published archived] end

Usage

Call .validate! to trigger validation and raise an error if the value is not allowed

Document.new(status: "draft").validate! # valid, there are no validation rules for Document Document.new(status: "published").validate! # valid, there are no validation rules for Document DraftDocument.new(status: "draft").validate! # valid DraftDocument.new(status: "in_review").validate! # valid DraftDocument.new(status: "published").validate! # raises error (not allowed) PublishedDocument.new(status: "published").validate! # valid PublishedDocument.new(status: "archived").validate! # valid PublishedDocument.new(status: "draft").validate! # raises error (not allowed)

====

All options that are supported by the attribute class method are also supported by the restrict method. Any unsupported option passed to restrict will result in a Lutaml::Model::InvalidAttributeOptionsError being raised.

=== Polymorphic attributes

==== General

A polymorphic attribute is an attribute that can accept multiple types of values. This is useful when the attribute defines common characteristics and behaviors among different types.

An attribute with a defined value type also accepts values that are of a class that is a subclass of the defined type.

The assigned attribute of Type accepts polymorphic classes as long as the assigned instance is of a class that either inherits from the declared type or matches it.

==== Naïve approach does not work...

A naïve polymorphic approach is to define an attribute with a superclass type and assign instances of subclasses to it.

While this approach works (somewhat) in modeling, it does not work with serialization (half) or deserialization (not at all).

The following example illustrates why such approach is naïve.

.An attribute receiving the superclass type accepts subclass instances [example]

[source,ruby]

class Studio < Lutaml::Model::Serializable attribute :name, :string end

CeramicStudio is a specialization of Studio

class CeramicStudio < Studio attribute :clay_type, :string end

class PotteryClass < Lutaml::Model::Serializable

the :studio attribute should accept Studio and CeramicStudio

attribute :studio, Studio end

[source,ruby]

This works

s = Studio.new(name: 'Pottery Studio') p = PotteryClass.new(studio: s) p.studio

=> <Studio:0x0000000104ac7240 @name="Pottery Studio", @address=nil, @established=nil>

A subclass of Studio is also valid

s = CeramicStudio.new(name: 'Ceramic World', clay_type: 'Red') p = PotteryClass.new(studio: s) p.studio

=> <CeramicStudio:0x0000000104ac7240 @name="Ceramic World", @address=nil, @established=nil, @clay_type="Red">

p.studio.name

=> "Ceramic World"

p.studio.clay_type

=> "Red"

So far so good. However, this approach does not work in serialization. This is what happens when we call to_yaml on the PotteryClass instance.

[source,ruby]

puts p.to_yaml

=> ---

=> studio:

=> name: Ceramic World

=> clay_type: Red

When deserializing the YAML string, the studio attribute will be deserialized as an instance of Studio, not CeramicStudio. This means that the clay_type attribute will be lost.

[source,ruby]

p = PotteryClass.load_yaml("---\nstudio:\n name: Ceramic World\n clay_type: Red") p.studio

=> <Studio:0x0000000104ac7240 @name="Ceramic World">

p.studio.clay_type

=> ERROR

====

==== Proper polymorphic approaches

Lutaml::Model offers rich support for polymorphic attributes, through configuration at both attribute and serialization levels.

In polymorphism, there are the following components:

polymorphic attribute:: the attribute that can be assigned multiple types.

polymorphic attribute class:: the class that has a polymorphic attribute.

polymorphic superclass:: a class assigned to a polymorphic attribute that serves as the superclass for all accepted polymorphic classes.

polymorphic subclass:: a class that is a subclass of the polymorphic superclass and can be assigned to the polymorphic attribute. There are often more than 2 subclasses in a scenario since polymorphism is meant to apply to multiple types.

To utilize polymorphic attributes, modification to all of these components are necessary.

In serialized form, polymorphic classes are differentiated by an explicit "polymorphic class differentiator".

.Sample serialization of polymorphic classes in YAML [example]

In key-value formats like YAML, the polymorphic class differentiator is typically a key-value pair that contains the polymorphic class name.

[source,yaml]

references:

  • _class: Document # This is a DocumentReference name: "The Tibetan Book of the Dead" document_id: "book:tbtd"
  • _class: Anchor # This is an AnchorReference name: "Chapter 1" anchor_id: "book:tbtd:anchor-1"

====

.Sample serialization of polymorphic classes in XML [example]

In XML, the polymorphic class differentiator is typically an attribute that contains the polymorphic class name.

[source,xml]

The Tibetan Book of the Dead book:tbtd Chapter 1 book:tbtd:anchor-1 ---- ====

NOTE: While it is possible to determine different polymorphic classes based on the attributes they contain, such mechanism would not be able to determine the polymorphic class if serializations of two polymorphic subclasses can be identical.

There are two basic scenarios in using polymorphic attributes:

  • Scenario 1: Setting polymorphism in the polymorphic superclass:

.. <> .. <> .. <>

  • Scenario 2: Setting polymorphism in the individual polymorphic subclasses:

.. <> .. <> .. <>

NOTE: Please refer to spec/lutaml/model/polymorphic_spec.rb for full examples of implementing polymorphic attributes.

[[polymorphic-superclass-class]] ==== Defining the polymorphic attribute

The polymorphic attribute class is a class that has a polymorphic attribute.

At this level, the polymorphic option is used to specify the types that the polymorphic attribute can accept.

[source,ruby]

class PolymorphicAttributeClass < Lutaml::Model::Serializable attribute :attribute_name, <1> {polymorphic-superclass-class}, <2> {options}, <3> polymorphic: [ <4> polymorphic-subclass-1, <5> polymorphic-subclass-2, ] end

<1> The name of the polymorphic attribute. <2> The polymorphic superclass class. <3> Any options for the attribute. <4> The polymorphic option that determines the acceptable polymorphic subclasses, or just true. <5> The polymorphic subclasses.

The polymorphic option is an array of polymorphic subclasses that the attribute can accept.

These options enable the following scenarios.

  • If the polymorphic attribute is to only contain instances of the polymorphic-superclass-class, not its subclasses, then the polymorphic option is not needed.

[example]

In the following code, ReferenceSet has an attribute references that only accepts instances of Reference. The polymorphic option does not apply.

[source,ruby]

class ReferenceSet < Lutaml::Model::Serializable attribute :references, Reference, collection: true end

====

  • If the attribute (collection or not) is meant to only contain one type of polymorphic subclasses, then the polymorphic option is also not needed, because the polymorphic subclass can be stated as the attribute value type.

[example]

In the following code, ReferenceSet has an attribute references that only accepts instances of DocumentReference, a subclass of Reference. The polymorphic option does not apply.

[source,ruby]

class ReferenceSet < Lutaml::Model::Serializable attribute :references, DocumentReference, collection: true end

====

  • If the attribute (collection or not) is meant to contain instances belonging to any polymorphic subclass of a defined base class, then set the polymorphic: true option.

[example]

In the following code, ReferenceSet is a class that has a polymorphic attribute references. The references attribute can accept instances of any polymorphic subclass of the Reference base class, so polymorphic: true is set.

[source,ruby]

class ReferenceSet < Lutaml::Model::Serializable attribute :references, Reference, collection: true, polymorphic: true end

====

  • If the attribute (collection or not) is meant to contain instances belonging to more than one polymorphic subclass, then those acceptable polymorphic subclasses should be explicitly specified in the polymorphic: [...] option.

[example]

In the following code, ReferenceSet is a class that has a polymorphic attribute references. The references attribute can accept instances of DocumentReference and AnchorReference, both of which are subclasses of Reference.

[source,ruby]

class ReferenceSet < Lutaml::Model::Serializable attribute :references, Reference, collection: true, polymorphic: [ DocumentReference, AnchorReference, ] end

====

[[polymorphic-subclass-differentiator]] ==== Differentiating polymorphic subclasses

===== General

A polymorphic subclass needs an additional attribute with the polymorphic_class option to allow Lutaml::Model for identifying itself in serialization. This attribute is called the "polymorphic class differentiator".

There are two methods for setting the polymorphic class differentiator:

  • Setting the polymorphic class differentiator in the polymorphic superclass, as polymorphic subclasses inherit from it (relying on <>).

  • Setting the polymorphic class differentiator in the individual polymorphic subclasses

[[polymorphic-differentiator-in-superclass]] ===== Setting the differentiator in the polymorphic superclass

The polymorphic class differentiator can be set in the polymorphic superclass. This scenario fits best if there are many polymorphic subclasses and the polymorphic superclass can be modified.

Syntax:

.Setting the polymorphic differentiator in the superclass [source,ruby]

class PolymorphicSuperclass < Lutaml::Model::Serializable attribute :{_polymorphic_differentiator}, <1> :string, <2> polymorphic_class: true <3>

...

end

<1> The polymorphic differentiator is a normal attribute that can be assigned to any name. <2> The polymorphic differentiator must have a value type of :string. <3> The option for polymorphic_class must be set to true to indicate that this attribute accepts subclass types.

[[polymorphic-differentiator-in-subclass]] ===== Setting the differentiator in the individual polymorphic subclasses

The polymorphic class differentiator can be set in the individual polymorphic subclasses. This scenario fits best if there are few polymorphic subclasses and the polymorphic superclass cannot be modified.

Syntax:

.Setting the polymorphic differentiator in the subclass [source,ruby]

No modification to the superclass is needed.

class PolymorphicSuperclass < Lutaml::Model::Serializable

...

end

The polymorphic differentiator is set in the subclass.

class PolymorphicSubclass < PolymorphicSuperclass attribute :{_polymorphic_differentiator}, <1> :string, <2> polymorphic_class: true <3>

...

end

<1> The polymorphic differentiator is a normal attribute that can be assigned to any name. <2> The polymorphic differentiator must have a value type of :string. <3> The option for polymorphic_class must be set to true to indicate that this attribute accepts subclass types.

[[polymorphic-differentiator-in-serialization]] ==== Polymorphic differentiation in serialization

===== General

The polymorphic attribute class needs to determine what class to use based on the serialized value of the polymorphic differentiator.

The polymorphic attribute class mapping is format-independent, allowing for differentiation of polymorphic subclasses in different serialization formats.

The mapping of the serialized polymorphic differentiator can be set in either:

  • the polymorphic superclass; or
  • the polymorphic attribute class and the individual polymorphic subclasses.

[[polymorphic-attribute-class-mapping-in-superclass]] ===== Mapping in the polymorphic superclass

This use case applies when the polymorphic superclass can be modified, and that polymorphism is intended to apply to all its subclasses.

This is done through the polymorphic_map option in the serialization blocks inside the polymorphic attribute class.

Syntax:

[source,ruby]

class PolymorphicSuperclass < Lutaml::Model::Serializable attribute :{_polymorphic_differentiator}, :string, polymorphic_class: true

xml do (map_attribute | map_element) "XmlPolymorphicAttributeName", <1> to: :{_polymorphic_differentiator}, <2> polymorphic_map: { <3> "xml-value-for-subclass-1" => PolymorphicSubclass1, <4> "xml-value-for-subclass-2" => PolymorphicSubclass2, } end

(key_value | key_value_format) do map "KeyValuePolymorphicAttributeName", <5> to: :{_polymorphic_differentiator}, <6> polymorphic_map: { "keyvalue-value-for-subclass-1" => PolymorphicSubclass1, "keyvalue-value-for-subclass-2" => PolymorphicSubclass2, } end end

class PolymorphicSubclass1 < PolymorphicSuperclass

...

end

class PolymorphicSubclass2 < PolymorphicSuperclass

...

end

class PolymorphicAttributeClass < Lutaml::Model::Serializable attribute :polymorphic_attribute, PolymorphicSuperclass, {options}, polymorphic: [ PolymorphicSubclass1, PolymorphicSubclass2, ]

...

end

<1> The name of the XML element or attribute that contains the polymorphic differentiator. <2> The name of the polymorphic differentiator attribute defined in attribute with the polymorphic option. <3> The polymorphic_map option that determines the class to use based on the value of the differentiator. <4> The mapping of the differentiator value to the polymorphic subclass. <5> The name of the key-value element that contains the polymorphic differentiator. <6> The name of the polymorphic differentiator attribute defined in attribute with the polymorphic option.

[example]

[source,ruby]

class Reference < Lutaml::Model::Serializable attribute :_class, :string, polymorphic_class: true attribute :name, :string

xml do map_attribute "reference-type", to: :_class, polymorphic_map: { "document-ref" => "DocumentReference", "anchor-ref" => "AnchorReference", } map_element "name", to: :name end

key_value do map "_class", to: :_class, polymorphic_map: { "Document" => "DocumentReference", "Anchor" => "AnchorReference", } map "name", to: :name end end

class DocumentReference < Reference attribute :document_id, :string

xml do map_element "document_id", to: :document_id end

key_value do map "document_id", to: :document_id end end

class AnchorReference < Reference attribute :anchor_id, :string

xml do map_element "anchor_id", to: :anchor_id end

key_value do map "anchor_id", to: :anchor_id end end

class ReferenceSet < Lutaml::Model::Serializable attribute :references, Reference, collection: true, polymorphic: [ DocumentReference, AnchorReference, ] end

[source,yaml]

references:

  • _class: Document name: The Tibetan Book of the Dead document_id: book:tbtd
  • _class: Anchor name: Chapter 1 anchor_id: book:tbtd:anchor-1

[source,xml]

The Tibetan Book of the Dead book:tbtd Chapter 1 book:tbtd:anchor-1 ---- ====

[[polymorphic-attribute-class-mapping-in-subclasses]] ===== Mapping in the polymorphic attribute class and individual polymorphic subclasses

This use case applies when the polymorphic superclass is not meant to be modified.

This is done through the polymorphic_map option in the serialization blocks inside the polymorphic attribute class, and the polymorphic option in the individual polymorphic subclasses.

In this scenario, similar to the previous case where the polymorphic differentiator is set at the polymorphic superclass, the following conditions must be satisifed:

  • the polymorphic differentiator attribute name must be the same across polymorphic subclasses

[example]

If the model polymorphic differentiator in one polymorphic subclass is _ref_type, then it must be so in all other polymorphic subclasses.

  • the polymorphic differentiator in the serialization formats must be identical within the polymorphic subclasses of that serialization format.

[example]

If the XML polymorphic differentiator is reference-type, then it must be so in the XML of all polymorphic subclasses.

Syntax:

[source,ruby]

Assume that we have no access to the base class and we need to define

polymorphism in the sub-classes.

class PolymorphicSuperclass < Lutaml::Model::Serializable end

class PolymorphicSubclass1 < PolymorphicSuperclass attribute :_polymorphic_differentiator, :string

xml do (map_attribute | map_element) "XmlPolymorphicAttributeName", <1> to: :_polymorphic_differentiator end

(key_value | key_value_format) do map "KeyValuePolymorphicAttributeName", <2> to: :_polymorphic_differentiator end end

class PolymorphicSubclass2 < PolymorphicSuperclass attribute :_polymorphic_differentiator, :string

xml do (map_attribute | map_element) "XmlPolymorphicAttributeName2", to: :_polymorphic_differentiator end

(key_value | key_value_format) do map "KeyValuePolymorphicAttributeName2", to: :_polymorphic_differentiator end end

class PolymorphicAttributeClass < Lutaml::Model::Serializable attribute :polymorphic_attribute, PolymorphicSuperclass, {options}, polymorphic: [ PolymorphicSubclass1, PolymorphicSubclass2, ] <3>

...

xml do map_element "XmlPolymorphicElement", <4> to: :polymorphic_attribute, polymorphic: { <5> # This refers to the polymorphic differentiator attribute in the polymorphic subclass. attribute: :_polymorphic_differentiator, <6> class_map: { <7> "xml-i-am-subclass-1" => "PolymorphicSubclass1", "xml-i-am-subclass-2" => "PolymorphicSubclass2", }, } end

(key_value | key_value_format) do map "KeyValuePolymorphicAttributeName", <8> to: :polymorphic_attribute, polymorphic: { <9> attribute: :_polymorphic_differentiator, <10> class_map: { <11> "keyvalue-i-am-subclass-1" => "PolymorphicSubclass1", "keyvalue-i-am-subclass-2" => "PolymorphicSubclass2", }, } end

end

<1> The name of the XML element or attribute that contains the polymorphic differentiator. <2> The name of the key-value element that contains the polymorphic differentiator. <3> Definition of the polymorphic attribute and the polymorphic subclasses in the polymorphic attribute class. <4> The name of the XML element that contains the polymorphic attributes. This must be an element as a polymorphic attribute must be a model. <5> The polymorphic option on a mapping defines necessary information for polymorphic serialization. <6> The attribute: name of the polymorphic differentiator attribute defined in the polymorphic subclass. <7> The class_map: option that determines the polymorphic subclass to use based on the value of the differentiator. <8> The name of the key-value format key that contains the polymorphic attributes. <9> Same as <5>, but for the key-value format. <10> Same as <6>, but for the key-value format. <11> Same as <7>, but for the key-value format.

[example]

[source,ruby]

class Reference < Lutaml::Model::Serializable attribute :name, :string end

class DocumentReference < Reference attribute :_class, :string attribute :document_id, :string

xml do map_element "document_id", to: :document_id map_attribute "reference-type", to: :_class end

key_value do map "document_id", to: :document_id map "_class", to: :_class end end

class AnchorReference < Reference attribute :_class, :string attribute :anchor_id, :string

xml do map_element "anchor_id", to: :anchor_id map_attribute "reference-type", to: :_class end

key_value do map "anchor_id", to: :anchor_id map "_class", to: :_class end end

class ReferenceSet < Lutaml::Model::Serializable attribute :references, Reference, collection: true, polymorphic: [ DocumentReference, AnchorReference, ]

xml do root "ReferenceSet"

map_element "reference", to: :references, polymorphic: {
  # This refers to the attribute in the polymorphic model, you need
  # to specify the attribute name (which is specified in the sub-classed model).
  attribute: "_class",
  class_map: {
    "document-ref" => "DocumentReference",
    "anchor-ref" => "AnchorReference",
  },
}

end

key_value do map "references", to: :references, polymorphic: { attribute: "_class", class_map: { "Document" => "DocumentReference", "Anchor" => "AnchorReference", }, } end end

[source,yaml]

references:

  • _class: Document name: The Tibetan Book of the Dead document_id: book:tbtd
  • _class: Anchor name: Chapter 1 anchor_id: book:tbtd:anchor-1

[source,xml]

The Tibetan Book of the Dead book:tbtd Chapter 1 book:tbtd:anchor-1 ---- ====

=== Collection attributes

Define attributes as collections (arrays or hashes) to store multiple values using the collection option.

When defining a collection attribute, it is important to understand the default initialization behavior and how to customize it.

By default, collections are initialized as nil. However, if you want the collection to be initialized as an empty array, you can use the initialize_empty: true option.

collection can be set to:

true::: The attribute contains an unbounded collection of objects of the declared class.

{min}..{max}::: The attribute contains a collection of objects of the declared class with a count within the specified range. If the number of objects is out of this numbered range, CollectionCountOutOfRangeError will be raised. + [example]

When set to 0..1, it means that the attribute is optional, it could be empty or contain one object of the declared class.

[example]

When set to 1.. (equivalent to 1..Infinity), it means that the attribute must contain at least one object of the declared class and can contain any number of objects.

[example]

When set to 5..10means that there is a minimum of 5 and a maximum of 10 objects of the declared class. If the count of values for the attribute is less then 5 or greater then 10, theCollectionCountOutOfRangeError` will be raised.

Syntax:

[source,ruby]

attribute :name_of_attribute, Type, collection: true attribute :name_of_attribute, Type, collection: {min}..{max} attribute :name_of_attribute, Type, collection: {min}..

.Using the collection option to define a collection attribute [example]

[source,ruby]

class Studio < Lutaml::Model::Serializable attribute :location, :string attribute :potters, :string, collection: true attribute :address, :string, collection: 1..2 attribute :hobbies, :string, collection: 0.. end

[source,ruby]

Studio.new

address count is 0, must be between 1 and 2 (Lutaml::Model::CollectionCountOutOfRangeError)

Studio.new({ address: ["address 1", "address 2", "address 3"] })

address count is 3, must be between 1 and 2 (Lutaml::Model::CollectionCountOutOfRangeError)

Studio.new({ address: ["address 1"] }).potters

[]

Studio.new({ address: ["address 1"] }).address

["address 1"]

Studio.new(address: ["address 1"], potters: ['John Doe', 'Jane Doe']).potters

['John Doe', 'Jane Doe']

[source,ruby]

Default to nil

class SomeModel < Lutaml::Model::Serializable attribute :coll, :string, collection: true

xml do root "some-model" map_element 'collection', to: :coll end

key_value do map 'collection', to: coll end end

puts SomeModel.new.coll

=> nil

puts SomeModel.new.to_xml

=>

puts SomeModel.new.to_yaml

=>

---

coll: null

[source,ruby]

Default to empty array

class SomeModel < Lutaml::Model::Serializable attribute :coll, :string, collection: true, initialize_empty: true

xml do map_element 'collection', to: :coll end

key_value do map 'collection', to: coll end end

puts SomeModel.new.coll

=> []

puts SomeModel.new.to_xml

=>

puts SomeModel.new.to_yaml

=>

---

coll: []

====

=== Derived attributes

A derived attribute has a value computed dynamically on evaluation of an instance method.

It is defined using the method: option.

Syntax:

[source,ruby]

attribute :name_of_attribute, method: :instance_method_name

.Defining methods as attributes [example]

[source,ruby]

class Invoice < Lutaml::Model::Serializable attribute :subtotal, :float attribute :tax, :float attribute :total, method: :total_value

def total_value subtotal + tax end end

i = Invoice.new(subtotal: 100.0, tax: 12.0) i.total #=> 112.0

puts i.to_yaml #=> --- #=> subtotal: 100.0 #=> tax: 12.0 #=> total: 112.0

====

=== Choice attributes

The choice directive allows specifying that elements from the specified range are included.

NOTE: Attribute-level definitions are supported. This can be used with both key_value and xml mappings.

Syntax:

[source,ruby]

choice(min: {min}, max: {max}) do {block} end

Where,

min:: The minimum number of elements that must be included. The minimum value can be 0. max:: The maximum number of elements that can be included. The maximum value can go up to Float::INFINITY. block:: The block of elements that must be included. The block can contain multiple attribute and choice directives.

.Using the choice directive to define a set of attributes with a range [example]

[source,ruby]

class Studio < Lutaml::Model::Serializable choice(min: 1, max: 3) do choice(min: 1, max: 2) do attribute :prefix, :string attribute :forename, :string end

attribute :completeName, :string

end end

This means that the Studio class must have at least one and at most three attributes.

  • The first choice must have at least one and at most two attributes.
  • The second attribute is the completeName.
  • The first choice can have either the prefix and forename attributes or just the forename attribute.
  • The last attribute completeName is optional. ====

NOTE: The choice directive can be used with import_model_attributes. For more details, see <<import-model-attributes-inside-choice, Using import_model_attributes inside a choice block>>.

=== Importable models for reuse

An importable model is a model that can be imported into another model using the import_* directive.

This feature works both with XML and key-value formats.

  • The import order determines how elements and attributes are overwritten.

  • An importable model with XML serialization mappings requires setting the model's XML serialization configuration with the no_root directive.

The model can be imported into another model using the following directives:

import_model:: imports both attributes and mappings.

import_model_attributes:: imports only attributes.

import_model_mappings:: imports only mappings.

NOTE: Models with no_root can only be parsed through parent models. Direct calling NoRootModel.from_xml will raise a NoRootMappingError.

NOTE: Namespaces are not currently supported in importable models. If namespace is defined with no_root, NoRootNamespaceError will be raised.

.Importing model components using an importable model [example]

[source,ruby]

class GroupOfItems < Lutaml::Model::Serializable attribute :name, :string attribute :type, :string attribute :code, :string

xml do no_root sequence do map_element "name", to: :name map_element "type", to: :type, namespace: "http://www.example.com", prefix: "ex1" end map_attribute "code", to: :code end end

class ComplexType < Lutaml::Model::Serializable attribute :tag, AttributeValueType attribute :content, :string attribute :group, :string import_model_attributes GroupOfItems

xml do root "GroupOfItems"

map_attribute "tag", to: :tag
map_content to: :content
map_element :group, to: :group
import_model_mappings GroupOfItems

end end

class SimpleType < Lutaml::Model::Serializable import_model GroupOfItems end

class GenericType < Lutaml::Model::Serializable import_model_mappings GroupOfItems end

[source,xml]

Name Type ----

[source,ruby]

parsed = GroupOfItems.from_xml(xml)

Lutaml::Model::NoRootMappingError: "GroupOfItems has no_root, it allowed only for reusable models"

====

[[import-model-mappings-inside-sequence]] ==== Using import_model_mappings inside a sequence

You can use import_model_mappings within a sequence block to include the element mappings from another model. This is useful for composing complex XML structures from reusable model components.

The element mappings will be imported inside this specific sequence block that calls the import method, rest of the mappings like content, attributes, etc. will be inserted at the class level.

NOTE: import_model and import_model_attributes are not supported inside a sequence block.

[example]

[source,ruby]

class Address < Lutaml::Model::Serializable attribute :street, :string attribute :city, :string attribute :zip, :string

xml do no_root

map_element :street, to: :street
map_element :city, to: :city
map_element :zip, to: :zip

end end

class Person < Lutaml::Model::Serializable attribute :name, :string import_model_attributes Address

xml do root "Person"

map_element :name, to: :name
sequence do
  import_model_mappings Address
end

end end

Example XML output:

valid_xml = <<~XML John Doe 123 Main St Metropolis 12345 XML invalid_xml = <<~XML John Doe 123 Main St 12345 XML Person.from_xml(valid_xml) # #<Person:0x00000002d56b3988 @city="Metropolis", @name="John Doe", @street="123 Main St", @zip="12345"> Person.from_xml(invalid_xml) # raises Element zipdoes not match the expected sequence order elementcity (Lutaml::Model::IncorrectSequenceError)

====

[[import-model-attributes-inside-choice]] ==== Using import_model_attributes inside a choice block

You can use import_model_attributes within a choice block to allow a model to accept one or more sets of attributes from other models, with flexible cardinality. This is especially useful when you want to allow a user to provide one or more alternative forms of information (e.g., contact methods) in your model.

For example, suppose you want a Person model that can have either an email, a phone, or both as contact information. You can define ContactEmail and ContactPhone as importable models, and then use import_model_attributes for both, inside a choice block in the Person model.

NOTE: The import_model_attributes method is used to import the attributes from the other model into the current model. The imported attributes will be associated to the choice block that calls the import method.

[example]

[source,ruby]

class ContactEmail < Lutaml::Model::Serializable attribute :email, :string

xml do no_root

map_element :email, to: :email

end end

class ContactPhone < Lutaml::Model::Serializable attribute :phone, :string

xml do no_root

map_element :phone, to: :phone

end end

class Person < Lutaml::Model::Serializable

Allow either or both contact methods, but at least one must be present

choice(min: 1, max: 2) do import_model_attributes ContactEmail import_model_attributes ContactPhone end

xml do root "Person"

map_element :email, to: :email
map_element :phone, to: :phone

end end

valid_xml = <<~XML john.doe@example.com 1234567890 XML

Person.from_xml(valid_xml).validate! # #<Person:0x00000002d0e27fe8 @email="john.doe@example.com", @phone="1234567890">

invalid_xml = <<~XML XML

Person.from_xml(invalid_xml).validate! # raises Lutaml::Model::ValidationError error

====

==== Using register functionality

The register functionality is useful when you want to reference or reuse a model by a symbolic name (e.g., across files or in dynamic scenarios), rather than by direct class reference.

.Importing a model using a Register [example]

[source,ruby]

register = Lutaml::Model::Register.new(:importable_model) register.register_model(GroupOfItems, id: :group_of_items)

The id: :group_of_items assigns a symbolic name to the registered model, which can then be used in import_model :group_of_items.

[source,ruby]

class GroupOfSubItems < Lutaml::Model::Serializable import_model :group_of_items end

====

The import_model :group_of_items will behave the same as import_model GroupOfItems except the class is resolved from the provided register.

NOTE: All the import_* methods support the use of register functionality.

NOTE: For more details on registers, see <<custom_registers, Custom Registers>>.

[[attribute-value-transform]] === Attribute value transform

An attribute value transformation is used when the value of an attribute needs to be transformed around assignment.

There are occasions where the value of an attribute is to be transformed during assignment and retrieval, such that when the external usage of the value differs from the internal model representation.

NOTE: Value transformation can be applied at the attribute-level or at the <<mapping-value-transform,serialization-mapping level>>. They can also be applied together.

[example]

Given a model that stores a measurement composed of a numerical value and a unit, where the numerical value is used for calculations inside the model, but the external representation of that value is a string (across all serialization formats).

  • Internal: number: 10.20, unit: cm.
  • External: "10.20 cm" ====

The transform option at the attribute method is used to define a transformation Proc for the attribute value.

Syntax:

[source,ruby]

class SomeObject < Lutaml::Model::Serializable attribute :attribute_name, {attr_type}, transform: { export: ->(value) { ... }, import: ->(value) { ... } } end

The transform option also support collection attributes.

Where,

attribute_name:: The name of the attribute.

attr_type:: The type of the attribute.

transform:: The option to define a transformation for the attribute value.

export:: The transformation Proc for the value when it is being retrieved from the model.

import:: The transformation Proc for the value when it is being assigned to the model.

[example] .Demonstrating attribute-level value transformation procs

[source,ruby]

class Ceramic < Lutaml::Model::Serializable attribute :name, :string, transform: { export: ->(value) { value.upcase }, import: ->(value) { value.downcase } } end

[source,ruby]

c = Ceramic.new(name: "Celadon") c.name

"CELADON"

c.instance_attribute_get(:@name)

"Celadon"

Ceramic.new(name: "Celadon").name = "Raku"

"RAKU"

====

=== Value validation

==== General

There are several mechanisms to validate attribute values in Lutaml::Model.

[[attribute-enumeration]] ==== Values of an enumeration

An attribute can be defined as an enumeration by using the values directive.

The values directive is used to define acceptable values in an attribute. If any other value is given, a Lutaml::Model::InvalidValueError will be raised.

Syntax:

[source,ruby]

attribute :name_of_attribute, Type, values: [value1, value2, ...]

The values set inside the values: option can be of any type, but they must match the type of the attribute. The values are compared using the == operator, so the type must implement the == method.

Also, If all the elements in values directive are strings then lutaml-model add some enum convenience methods, for each of the value the following three methods are added

  • value1: will return value if set
  • value1?: will return true if value is set, false otherwise
  • value1=: will set the value of name_of_attribute equal to value1 if truthy value is given, and remove it otherwise.

.Using the values directive to define acceptable values for an attribute (basic types) [example]

[source,ruby]

class GlazeTechnique < Lutaml::Model::Serializable attribute :name, :string, values: ["Celadon", "Raku", "Majolica"] end

[source,ruby]

GlazeTechnique.new(name: "Celadon").name

"Celadon"

GlazeTechnique.new(name: "Raku").name

"Raku"

GlazeTechnique.new(name: "Majolica").name

"Majolica"

GlazeTechnique.new(name: "Earthenware").name

Lutaml::Model::InvalidValueError: Invalid value for attribute 'name'

====

The values can be Serialize objects, which are compared using the == and the hash methods through the Lutaml::Model::ComparableModel module.

.Using the values directive to define acceptable values for an attribute (Serializable objects) [example]

[source,ruby]

class Ceramic < Lutaml::Model::Serializable attribute :type, :string attribute :firing_temperature, :integer end

[source,ruby]

CeramicCollection.new(featured_piece: Ceramic.new(type: "Porcelain", firing_temperature: 1300)).featured_piece

Ceramic:0x0000000104ac7240 @type="Porcelain", @firing_temperature=1300

CeramicCollection.new(featured_piece: Ceramic.new(type: "Bone China", firing_temperature: 1300)).featured_piece

====

Serialize provides a validate method that checks if all its attributes have valid values. This is necessary for the case when a value is valid at the component level, but not accepted at the aggregation level.

If a change has been made at the component level (a nested attribute has changed), the aggregation level needs to call the validate method to verify acceptance of the newly updated component.

.Using the validate method to check if all attributes have valid values [example]

[source,ruby]

collection = CeramicCollection.new(featured_piece: Ceramic.new(type: "Porcelain", firing_temperature: 1300)) collection.featured_piece.firing_temperature = 1400

No error raised in changed nested attribute

collection.validate

====

==== String values restricted to patterns

An attribute that accepts a string value accepts value validation using regular expressions.

Syntax:

[source,ruby]

attribute :name_of_attribute, :string, pattern: /regex/

.Using the pattern option to restrict the value of an attribute [example]

In this example, the color attribute takes hex color values such as #ccddee.

A regular expression can be used to validate values assigned to the attribute. In this case, it is /^#([A-Fa-f0-9]{6}|[A-Fa-f0-9]{3})$/.

[source,ruby]

class Glaze < Lutaml::Model::Serializable attribute :color, :string, pattern: /\A#([A-Fa-f0-9]{6}|[A-Fa-f0-9]{3})\z/ end

[source,ruby]

Glaze.new(color: '#ff0000').color

"#ff0000"

Glaze.new(color: '#ff000').color

Lutaml::Model::InvalidValueError: Invalid value for attribute 'color'

====

=== Attribute value defaults

Specify default values for attributes using the default option. The default option can be set to a value or a lambda that returns a value.

Syntax:

[source,ruby]

attribute :name_of_attribute, Type, default: -> { value }

.Using the default option to set a default value for an attribute [example]

[source,ruby]

class Glaze < Lutaml::Model::Serializable attribute :color, :string, default: -> { 'Clear' } attribute :temperature, :integer, default: -> { 1050 } end

[source,ruby]

Glaze.new.color

"Clear"

Glaze.new.temperature

1050

====

The "default behavior" (pun intended) is to not render a default value if the current value is the same as the default value.

=== Attribute as raw string

An attribute can be set to read the value as raw string for XML, by using the raw: true option.

Syntax:

[source,ruby]

attribute :name_of_attribute, :string, raw: true

.Using the raw option to read raw value for an XML attribute [example]

[source,ruby]

class Person < Lutaml::Model::Serializable attribute :name, :string attribute :description, :string, raw: true end

For the following XML snippet:

[source,xml]

John Doe A fictional person commonly used as a placeholder name. ----

[source,ruby]

Person.from_xml(xml)

<Person:0x0000000107a3ca70

@description="\n    A <b>fictional person</b> commonly used as a <i>placeholder name</i>.\n  ",
@element_order=["text", "name", "text", "description", "text"],
@name="John Doe",
@ordered=nil>

====

== Collections

=== General

Collections are used to represent a contained group of multiple instances of models.

Typically, a collection represents an "Array" or a "Set" in information modeling and programming languages. In LutaML, a collection represents an array of model instances.

Models in a collection may be:

  • constrained to be of a single kind;

  • constrained to be of multiple kinds sharing common characteristics;

  • unbounded of any kind.

LutaML Model provides the Lutaml::Model::Collection class for defining collections of model instances.

=== Configuration

==== All formats

The instances directive defined at the Collection class level is used to define the collection attribute and the model type of the collection elements.

Syntax:

[source,ruby]

class MyCollection < Lutaml::Model::Collection instances {attribute}, {ModelType} end

Where,

attribute:: The name of the attribute that contains the collection. ModelType:: The model type of the collection elements.

==== Mapping instances: key-value formats only

The map_instances directive is only used in the key_value block.

Syntax:

[source,ruby]

class MyCollection < Lutaml::Model::Collection instances {attribute}, ModelType

key_value do map_instances to: {attribute} end end

Where,

attribute:: The name of the attribute that contains model instances.

This directive maps individual array elements to the defined instances attribute. These are the items considered part of the Collection and reflected as Enumerable elements.

==== Mapping instances: XML only

In the xml block, the map_element, map_attribute directives are used instead.

These directives map individual array elements to the defined instances attribute. These are the items considered part of the Collection and reflected as Enumerable elements.

Syntax for an element collection:

[source,ruby]

class MyCollection < Lutaml::Model::Collection instances {attribute}, ModelType

xml do map_element "element-name", to: {attribute} end end

Where,

element-name:: The name of the XML element of each model instance.

Syntax for an attribute collection:

[source,ruby]

class MyCollection < Lutaml::Model::Collection instances {attribute}, ModelType xml do map_attribute "attribute-name", to: {attribute} end end

Where,

attribute-name:: The name of the XML attribute that contains all model instances.

=== Collection types

A LutaML collections is used for a number of scenarios:

  • Root collections (for key-value formats)
  • Named collections
  • Keyed collections (for key-value formats)
  • Attribute collections
  • Nested collections // * Polymorphic collections // * Polymorphic attribute collections

=== Root collections (key-value formats only)

==== General

TODO: This case needs to be fixed for JSON.

A root collection is a collection that is not contained within a parent collection.

Root collections only apply to key-value serialization formats. The XML format does not support root collections.

NOTE: The https://www.w3.org/TR/xml11/[XML standard] mandates the existence of a non-repeated "root element" in an XML document. This means that a valid XML document must have a root element, and all elements in an XML document must exist within the root. This is why an XML document cannot be a "root collection".

NOTE: A root collection cannot be represented using a non-collection model.

Root collections store multiple instances of the same model type at the root level. In other words, these are model instances that do not have a defined container at the level of the LutaML Model.

There are two kinds of root collections depending on the type of the instance value:

"Root value collection":: the value is a "primitive type"

"Root object collection":: the value is a "model instance"

Regardless of the type of root collection, the instance in a collection is always a LutaML model instance.

==== Root value collections

A root value collection is a collection that directly contains values of a primitive type.

.Simple root collection with each instance being a value [example]

[source,yaml]

  • Item One
  • Item Two
  • Item Three

[source,json]

[ "Item One", "Item Two", "Item Three" ]

====

Syntax:

[source,ruby]

class MyCollection < Lutaml::Model::Collection instances :items, ModelType end

class ModelType < Lutaml::Model::Serializable attribute :name, :string end

.Handling a root collection where each instance is a value [example]

Code:

[source,ruby]

class Title < Lutaml::Model::Serializable attribute :content, :string end

class TitleCollection < Lutaml::Model::Collection instances :titles, Title

key_value do no_root # default map_instances to: :titles end end

Data:

[source,yaml]

  • Title One
  • Title Two
  • Title Three

[source,json]

[ "Title One", "Title Two", "Title Three" ]

Usage:

[source,ruby]

titles = TitleCollection.from_yaml(yaml_data) titles.count

=> 3

titles.first.content

=> "Title One"

====

==== Root object collections

A root object collection is a collection that directly contains model instances, each containing at least one serialized attribute.

.Simple root collection in YAML with each instance being a models with an attribute name [example]

[source,yaml]

  • name: Item One
  • name: Item Two
  • name: Item Three

[source,json]

[ {"name": "Item One"}, {"name": "Item Two"}, {"name": "Item Three"} ]

====

.Handling a root collection where each instance is defined by a model with attributes [example]

Code:

[source,ruby]

class Title < Lutaml::Model::Serializable attribute :content, :string end

class TitleCollection < Lutaml::Model::Collection instances :titles, Title

key_value do no_root # default map_instances to: :titles end end

Data:

[source,yaml]

  • content: Title One
  • content: Title Two
  • content: Title Three

[source,json]

[ {"content": "Title One"}, {"content": "Title Two"}, {"content": "Title Three"} ]

Usage:

[source,ruby]

titles = TitleCollection.from_yaml(yaml_data) titles.count

=> 3

titles.first.content

=> "Title One"

====

=== Named collections

==== General

Named collections are collections wrapped inside a name or a key. The "name" of the collection serves as the container root of its contained model instances.

The named collection setup applies to XML and key-value serialization formats.

In a named collection setup, the collection is defined as a Lutaml::Model::Collection class, and each instance is defined as a Lutaml::Model::Serializable class.

There are two kinds of named collections depending on the type of the instance value:

"Named value collection":: the value is a "primitive type"

"Named object collection":: the value is a "model instance"

Regardless of the name of root collection, the instance in a collection is always a LutaML model instance.

==== Named value collections

A named value collection is a collection that contains values of a primitive type.

.Named value collection in XML with models each containing an element with content [source,xml]

Item One Item Two Item Three ----

.Named value collection in YAML with models each containing a value [source,yaml]

names:

  • Item One
  • Item Two
  • Item Three

Syntax:

[source,ruby]

class MyCollection < Lutaml::Model::Collection instances :items, ModelType

xml do root "name-of-xml-container-element" end

key_value do root "name-of-key-value-container-element" end end

class ModelType < Lutaml::Model::Serializable attribute :name, :string end

A named collection can alternatively be implemented as a non-collection model ("Model class with an attribute") that contains the collection of instances. In this case, the attribute will be an Array object, which does not contain additional attributes and methods.

.Handling a named collection with instance elements directly containing values [example]

[source,ruby]

class Title < Lutaml::Model::Serializable attribute :title, :string

xml do root "title" map_content to: :title end end

class DirectTitleCollection < Lutaml::Model::Collection instances :items, Title

xml do root "titles" map_element "title", to: :items end

key_value do map_instances to: :items end end

[source,xml]

Title One Title Two Title Three ----

[source,yaml]

titles:

  • Title One
  • Title Two
  • Title Three

[source,json]

{ "titles": [ "Title One", "Title Two", "Title Three" ] }

[source,ruby]

titles = DirectTitleCollection.from_yaml(yaml_data) titles.count

=> 3

titles.first.title

=> "Title One"

titles.last.title

=> "Title Three"

====

==== Named object collections

A named object collection is a collection that contains model instances, each containing at least one serialized attribute.

NOTE: A named object collection can alternatively be implemented as a non-collection model ("Model class with an attribute") that contains the collection of instances. In this case, the attribute will be an Array object, which does not contain additional attributes and methods.

.Named object collection in XML with instances each containing an element with a model attribute [source,xml]

Item One Item Two Item Three ----

.Named object collection in YAML with instances each containing a model attribute [source,yaml]

names:

  • name: Item One
  • name: Item Two
  • name: Item Three

.Named object collection with each instance containing at least one model attribute [example]

Data:

[source,xml]

<content>Title One</content> <content>Title Two</content> <content>Title Three</content> ----

[source,yaml]

titles:

  • title: Title One
  • title: Title Two
  • title: Title Three

[source,json]

{ "titles": [ {"title": "Title One"}, {"title": "Title Two"}, {"title": "Title Three"} ] }

Code:

[source,ruby]

class Title < Lutaml::Model::Serializable attribute :title, :string

xml do root "title" map_element "content", to: :title end

key_value do map "title", to: :title end end

class TitleCollection < Lutaml::Model::Collection instances :items, Title

xml do root "titles" map_element 'title', to: :items end

key_value do root "titles" map_instances to: :items end end

Usage:

[source,ruby]

titles = TitleCollection.from_yaml(yaml_data) titles.count

=> 3

titles.first.title

=> "Title One"

titles.last.title

=> "Title Three"

====

=== Attribute collection class

A model attribute that is a collection can be contained within a custom collection class.

A custom collection class can be defined to provide custom behavior for the collection inside a non-collection model, with attributes using collection: true.

Syntax:

[source,ruby]

class MyModel < Lutaml::Model::Serializable attribute {model-attribute}, ModelType, collection: MyCollection end

class MyCollection < Lutaml::Model::Collection instances {instance-name}, ModelType

Custom behavior for the collection

def custom_method # Custom logic here end end

.Using a custom collection class for custom collection behavior [example]

Data:

[source,xml]

Title One Title Two Title Three ----

[source,yaml]

titles:

  • title: Title One
  • title: Title Two
  • title: Title Three

[source,ruby]

class StringParts < Lutaml::Model::Collection instances :parts, :string

def to_s parts.join(' -- ') end end

class BibliographicItem < Lutaml::Model::Serializable attribute :title_parts, :string, collection: StringParts

xml do root "titles" map_element "title", to: :title_parts end

key_value do root "titles" map_instances to: :title_parts end

def render_title title_parts.to_s end end

[source,ruby]

bib_item = BibliographicItem.from_xml(xml_data) bib_item.title_parts

StringParts:0x0000000104ac7240 @parts=["Title One", "Title Two", "Title Three"]

bib_item.render_title

"Title One -- Title Two -- Title Three"

====

=== Nested collections

TODO: This case needs to be fixed.

Collections can be nested within other models and define their own serialization rules.

Nested collections can be defined in the same way as root collections, but they are defined within the context of a parent model.

[example]

Data:

[source,xml]

Title One Title Two Title Three ----

[source,yaml]

titles: title-group: - artifact: content: Title One - artifact: content: Title Two - artifact: content: Title Three

[source,ruby]

class Title < Lutaml::Model::Serializable attribute :content, :string end

class TitleCollection < Lutaml::Model::Collection instances :items, Title

xml do root "title-group" map_element "artifact", to: :items end end

class BibItem < Lutaml::Model::Serializable attribute :titles, TitleCollection

xml do root "bibitem" # This overrides the collection's root "title-group" map_element "titles", to: :titles end end

====

=== Keyed collections (key-value serialization formats only)

==== General

In key-value serialization formats, a key can be used to uniquely identify each instance. This usage allows for enforcing uniqueness in the collection.

A collection that contains keyed objects as its instances is commonly called a "keyed collection". A keyed object in a serialization format is an object identified with a unique key.

NOTE: The concept of keyed collections does not typically apply to XML collections.

There are two kinds of keyed collections depending on the type of the keyed value:

"keyed value collection":: the value is a "primitive type"

"keyed object collection":: the value is a "model instance"

Regardless of the type of keyed collections, the instance in a collection is always a LutaML model instance.

==== map_key method

The map_key method specifies that the unique key is to be moved into an attribute belonging to the instance model.

Syntax:

[source,ruby]

key_value do map_key to_instance: {instance-attribute-name} end

Where,

to_instance:: Refers to the attribute name in the instance that contains the key. {key_attribute}:: The attribute name in the instance that contains the key.

==== map_value method

The map_value method specifies that the value (the object referenced by the unique key) is to be moved into an attribute belonging to the instance model.

Syntax:

[source,ruby]

key_value do

basic pattern

map_value {operation}: [*argument]

Mapping the value object to a full instance through to_instance

map_value to_instance: {instance-attribute-name}

Mapping the value object to an attribute as_instance

map_value as_attribute: {instance-attribute-name} end

==== Keyed value collections

A keyed value collection is a collection where the keyed item in the serialization format is a primitive type (e.g. string, integer, etc.).

The instance item inside the collection is a model instance that contains both the serialized key and serialized value both as attributes inside the model.

All three map_key, map_value, and map_instances methods need to be used to define how instances are mapped in a keyed value collection.

.Creating a keyed value collection [example]

[source,ruby]

class AuthorAvailability < Lutaml::Model::Serializable attribute :id, :string attribute :available, :boolean end

class AuthorCollection < Lutaml::Model::Collection instances :authors, AuthorAvailability

key_value do map_key to_instance: :id # This refers to 'authors[].id' map_value as_attribute: :available # This refers to 'authors[].available' map_instances to: :authors end end

[source,yaml]

author_01: true author_02: false author_03: true

[source,ruby]

authors = AuthorCollection.from_yaml(yaml_data) authors.first.id

=> "author_01"

authors.first.available

=> true

====

==== Keyed object collections

A keyed object collection is a collection where the keyed item in the serialization format contains multiple attributes.

The instance item inside the collection is a model instance that contains the serialized key as one attribute, and the serialized value attributes are all attributes inside the model.

Both the map_key and map_instances are used to define how instances are mapped in a keyed object collection.

.Creating a keyed object collection [example]

[source,ruby]

class Author < Lutaml::Model::Serializable attribute :id, :string attribute :name, :string end

class AuthorCollection < Lutaml::Model::Collection instances :authors, Author

key_value do map_key to_instance: :id # This refers to 'authors[].id' map_instances to: :authors end end

[source,yaml]

author_01: name: Author One author_02: name: Author Two author_03: name: Author Three

[source,ruby]

authors = AuthorCollection.from_yaml(yaml_data) authors.first.id

=> "author_01"

authors.first.name

=> "Author One"

====

==== Nested keyed object collection

A nested keyed object collection is a keyed collection that contain other keyed collections. This case is simply a more complex arrangement of the principles applied to keyed object collections.

This pattern can extend to multiple levels of nesting, where each level contains a keyed object collection that can have its own key and value mappings.

Depends on whether a custom collection class is needed, the following mechanisms are available:

  • When using a Lutaml::Model::Serializable class for a keyed collection, use the child_mappings option to map attributes.

  • When using a Lutaml::Model::Collection class for a keyed collection, there are two options:

  • use the map_key, map_value, and map_instances methods to map attributes; or

  • use the root_mappings option to map attributes.

.Nested 2-layer keyed object collection [example]

This example provides a two-layer nested structure where:

  • The first layer keys pieces by type (bowls, vases).
  • The second layer keys glazes by finish name within each piece type.
  • Each glaze finish contains detailed attributes like temperature.

[source,ruby]

Third layer represents glaze finishes.

class GlazeFinish < Lutaml::Model::Serializable attribute :name, :string attribute :temperature, :integer

key_value do map "name", to: :name map "temperature", to: :temperature end end

Second layer represents ceramic pieces each with multiple finishes.

class CeramicPiece < Lutaml::Model::Serializable attribute :piece_type, :string attribute :glazes, GlazeFinish, collection: true

key_value do map "piece_type", to: :piece_type map "glazes", to: :glazes, child_mappings: { name: :key, temperature: :temperature } end end

Uppermost layer represents the collection of ceramic pieces.

class StudioInventory < Lutaml::Model::Collection instances :pieces, CeramicPiece

key_value do map to: :pieces, root_mappings: { piece_type: :key, glazes: :value, } end end

[source,yaml]

bowls: matte_finish: name: Earth Matte temperature: 1240 glossy_finish: name: Ocean Blue temperature: 1260 crackle_finish: name: Antique Crackle temperature: 1220 vases: metallic_finish: name: Bronze Metallic temperature: 1280 crystalline_finish: name: Ice Crystal temperature: 1300

[source,ruby]

inventory = StudioInventory.from_yaml(yaml_data)

Access nested data through the hierarchy

puts inventory.pieces.bowls.matte_finish.name

=> "Earth Matte"

puts inventory.pieces.bowls.matte_finish.temperature

=> 1240

Iterate through all pieces and their glazes

inventory.pieces.each do |piece_type, piece| puts "#{piece_type.capitalize}:" piece.glazes.each do |glaze_name, glaze| puts " #{glaze_name}: #{glaze.name} (#{glaze.temperature}°C)" end end

====

=== Behavior

==== Enumerable interface

Collections implement the Ruby Enumerable interface, providing standard collection operations.

Collections allow the following sample Enumerable methods:

  • each - Iterate over collection items
  • map - Transform collection items
  • select - Filter collection items
  • find - Find items matching criteria
  • reduce - Aggregate collection items

.Usage of the collection Enumerable interface [example]

[source,ruby]

Filter items

filtered = collection.filter { |item| item.id == "1" }

Reject items

rejected = collection.reject { |item| item.id == "1" }

Select items

selected = collection.select { |item| item.id == "1" }

Map items

mapped = collection.map { |item| item.name }

Count items

count = collection.count

====

// ==== Collection validation

// Collections can define validation rules for their elements.

// [example] // ==== // [source,ruby] // ---- // class PublicationCollection < Lutaml::Model::Collection // instances(:publications, Publication) do // validates :year, numericality: { greater_than: 1900 }

// validate :must_have_author

// def must_have_author(publications) // publications.each do |publication| // next unless publication.author.nil? // errors.add(:author, "#{publication.title} must have an author") // end // end // end // end // ---- // ====

==== Initialization

Collections can be initialized with an array of items or through individual item addition.

[example]

[source,ruby]

Empty collection

collection = ItemCollection.new

From an array of items

collection = ItemCollection.new([item1, item2, item3])

From an array of hashes

collection = ItemCollection.new([ { id: "1", name: "Item 1" }, { id: "2", name: "Item 2" } ])

Adding items later

collection << Item.new(id: "3", name: "Item 3")

====

==== Ordering

TODO: This case needs to be fixed.

Collections that maintain a specific ordering of elements.

Syntax:

[source,ruby]

class MyCollection < Lutaml::Model::Collection instances {instances-name}, ModelType ordered by: {attribute-of-instance}, order: {:asc | :desc} end

Where,

{instances-name}:: name of the instances accessor within the collection ModelType:: The model type of the collection elements.

{attribute-of-instance-or-proc}:: How model instances are to be ordered by. Values supported are: {attribute-of-instance}::: Attribute name of an instance to be ordered by. {proc}::: Proc that returns a value to order by (same as sort_by), given the instance as input.

order::: Order direction of the value: :asc:::: Ascending order (default). :desc:::: Descending order.

.Ordered collection applied to a root collection [example]

Data:

[source,xml]

----

[source,yaml]

  • id: 3 name: Item Three
  • id: 1 name: Item One
  • id: 2 name: Item Two

[source,ruby]

class Item < Lutaml::Model::Serializable attribute :id, :string attribute :name, :string

xml do map_attribute "id", to: :id map_attribute "name", to: :name end end

class OrderedItemCollection < Lutaml::Model::Collection instances :items, Item ordered by: :id, order: :desc

xml do root "items" map_element "item", to: :items end

key_value do no_root map_instances to: :items end end

[source,ruby]

collection = OrderedItemCollection.from_xml(xml_data) collection.map(&:id)

["3", "2", "1"]

collection = OrderedItemCollection.from_yaml(yaml_data) collection.map(&:id)

["3", "2", "1"]

====

// ==== Polymorphic collections

// Collections can contain instances of different model classes that share a common // base class.

// The polymorphic options for attributes are also applied here.

// [example] // ==== // [source,ruby] // ---- // class PolymorphicItemCollection < Lutaml::Model::Collection // instances :items, Item, polymorphic: true

// xml do // root "items" // map_element "item", to: :items // end

// key_value do // root "items" // map_instances to: :items // end // end // ---- // ====

== Serialization model mappings

=== General

Lutaml::Model allows you to translate a data model into serialization models of various serialization formats.

Depending on the serialization format, different methods are supported for defining serialization and deserialization mappings.

A serialization model mapping is defined using a format-specific DSL block in this syntax:

[source,ruby]

class Example < Lutaml::Model::Serializable {format-short-name} do <1> # ... end end

<1> {format-short-name} is the serialization format short name.

There are two kinds of serialization models:

  • Represents a singular model (maps to a Lutaml::Model::Serializable)
  • Represents a group/collection of models (maps to Lutaml::Model::Collection)

A collection contains instances of singular models, and therefore is always inextricably linked to an underlying serialization format for singular models. For instance, JSONL represents a collection (itself being invalid JSON) that uses JSON for singular models.

The supported serialization formats and their short names are defined as follows:

Model serialization formats::

xml::: XML hsh::: Hash + NOTE: Yes a 3-letter abbreviation for Hash!

json::: JSON yaml::: YAML toml::: TOML key_value::: Key-value format, a shorthand for all key-value formats (including JSON, YAML and TOML).

Collection serialization formats::

jsonl::: JSONL (JSON Lines) yamls::: YAML Stream (multi-document format)

.Using the xml, hsh, json, yaml, toml and key_value blocks to define serialization mappings [example]

[source,ruby]

class Example < Lutaml::Model::Serializable xml do # ... end

hsh do # ... end

json do # ... end

yaml do # ... end

toml do # ... end

key_value do # ... end end

====

.Using the jsonl block to define serialization mappings to a collection [example]

[source,ruby]

class Example < Lutaml::Model::Collection jsonl do # ... end end

====

=== XML

==== Setting root element name

The root method sets the root element tag name of the XML document.

If root is not given, then the snake-cased class name will be used as the root.

[example] Sets the tag name for <example> in XML <example>...</example>.

Syntax:

[source,ruby]

xml do root 'xml_element_name' end

.Setting the root element name to example [example]

[source,ruby]

class Example < Lutaml::Model::Serializable xml do root 'example' end end

[source,ruby]

Example.new.to_xml #

====

==== Ommiting root element

The root element can be omitted by using the no_root method.

When no_root is used, only map_element can be used because without a root element there cannot be attributes.

Syntax:

[source,ruby]

xml do no_root end

[example]

[source,ruby]

class NameAndCode < Lutaml::Model::Serializable attribute :name, :string attribute :code, :string

xml do no_root map_element "code", to: :code map_element "name", to: :name end end

[source,xml]

Name ID-001

[source,ruby]

parsed = NameAndCode.from_xml(xml)

<NameAndCode:0x0000000107a3ca70 @code="ID-001", @name="Name">

parsed.to_xml

ID-001Name

====

[[xml-map-all]] ==== Mapping all XML content

The map_all tag in XML mapping captures and maps all content within an XML element into a single attribute in the target Ruby object.

The use case for map_all is to tell Lutaml::Model to not parse the content of the XML element at all, and instead handle it as an XML string.

NOTE: The corresponding method for key-value formats is at <>.

WARNING: Notice that usage of mapping all will lead to incompatibility between serialization formats, i.e. the raw string content will not be portable as objects are across different formats.

This is useful in the case where the content of an XML element is not to be handled by a Lutaml::Model::Serializable object.

This feature is commonly used with custom methods or a custom model object to handle the content.

This includes:

  • nested tags
  • attributes
  • text nodes

The map_all tag is exclusive and cannot be combined with other mappings (map_element, map_content) except for map_attribute for the same element, ensuring it captures the entire inner XML content.

NOTE: An error is raised if map_all is defined alongside any other mapping in the same XML mapping context.

Syntax:

[source,ruby]

xml do map_all to: :name_of_attribute end

.Mapping all the content using map_all [example]

[source,ruby]

class ExampleMapping < Lutaml::Model::Serializable attribute :description, :string

xml do map_all to: :description end end

[source,xml]

Content with tags and formatting.

[source,ruby]

parsed = ExampleMapping.from_xml(xml) puts parsed.all_content

"Content with tags and formatting."

====

==== Mapping elements

The map_element method maps an XML element to a data model attribute.

[example] To handle the <name> tag in <example><name>John Doe</name></example>. The value will be set to John Doe.

Syntax:

[source,ruby]

xml do map_element 'xml_element_name', to: :name_of_attribute end

.Mapping the name tag to the name attribute [example]

[source,ruby]

class Example < Lutaml::Model::Serializable attribute :name, :string

xml do root 'example' map_element 'name', to: :name end end

[source,xml]

John Doe

[source,ruby]

Example.from_xml(xml) #<Example:0x0000000104ac7240 @name="John Doe"> Example.new(name: "John Doe").to_xml #John Doe

====

If an element is mapped to a model object with the XML root tag name set, the mapped tag name will be used as the root name, overriding the root name.

.The mapped tag name is used as the root name [example]

[source,ruby]

class RecordDate < Lutaml::Model::Serializable attribute :content, :string

xml do root "recordDate" map_content to: :content end end

class OriginInfo < Lutaml::Model::Serializable attribute :date_issued, RecordDate, collection: true

xml do root "originInfo" map_element "dateIssued", to: :date_issued end end

[source,ruby]

RecordDate.new(date: "2021-01-01").to_xml #2021-01-01 OriginInfo.new(date_issued: [RecordDate.new(date: "2021-01-01")]).to_xml #2021-01-01

====

==== Mapping attributes

The map_attribute method maps an XML attribute to a data model attribute.

Syntax:

[source,ruby]

xml do map_attribute 'xml_attribute_name', to: :name_of_attribute end

.Using map_attribute to map the value attribute [example]

The following class will parse the XML snippet below:

[source,ruby]

class Example < Lutaml::Model::Serializable attribute :value, :integer

xml do root 'example' map_attribute 'value', to: :value end end

[source,xml]

John Doe

[source,ruby]

Example.from_xml(xml) #<Example:0x0000000104ac7240 @value=12> Example.new(value: 12).to_xml #

====

The map_attribute method does not inherit the root element's namespace. To specify a namespace for an attribute, please explicitly declare the namespace and prefix in the map_attribute method.

[example]

The following class will parse the XML snippet below:

[source,ruby]

class Attribute < Lutaml::Model::Serializable attribute :value, :integer

xml do root 'example' map_attribute 'value', to: :value, namespace: "http://www.tech.co/XMI", prefix: "xl" end end

[source,xml]

[source,ruby]

Attribute.from_xml(xml) #<Attribute:0x0000000109436db8 @value=20> Attribute.new(value: 20).to_xml #<example xmlns:xl="http://www.tech.co/XMI\" xl:value="20"/>

====

==== Mapping content

Content represents the text inside an XML element, inclusive of whitespace.

The map_content method maps an XML element's content to a data model attribute.

Syntax:

[source,ruby]

xml do map_content to: :name_of_attribute end

.Using map_content to map content of the description tag [example]

The following class will parse the XML snippet below:

[source,ruby]

class Example < Lutaml::Model::Serializable attribute :description, :string

xml do root 'example' map_content to: :description end end

[source,xml]

John Doe is my moniker.

[source,ruby]

Example.from_xml(xml) #<Example:0x0000000104ac7240 @description="John Doe is my moniker."> Example.new(description: "John Doe is my moniker.").to_xml #John Doe is my moniker.

====

==== CDATA nodes

CDATA is an XML feature that allows the inclusion of text that may contain characters that are unescaped in XML.

While CDATA is not preferred in XML, it is sometimes necessary to handle CDATA nodes for both input and output.

NOTE: The W3C XML Recommendation explicitly encourages escaping characters over usage of CDATA.

Lutaml::Model supports the handling of CDATA nodes in XML in the following behavior:

. When an attribute contains a CDATA node with no text: ** On reading: The node (CDATA or text) is read as its value. ** On writing: The value is written as its native type.

. When an XML mapping sets cdata: true on map_element or map_content: ** On reading: The node (CDATA or text) is read as its value. ** On writing: The value is written as a CDATA node.

. When an XML mapping sets cdata: false on map_element or map_content: ** On reading: The node (CDATA or text) is read as its value. ** On writing: The value is written as a text node (string).

Syntax:

[source,ruby]

xml do map_content to: :name_of_attribute, cdata: (true | false) map_element :name, to: :name, cdata: (true | false) end

.Using cdata to map CDATA content [example]

The following class will parse the XML snippet below:

[source,ruby]

class Example < Lutaml::Model::Serializable attribute :name, :string attribute :description, :string attribute :title, :string attribute :note, :string

xml do root 'example' map_element :name, to: :name, cdata: true map_content to: :description, cdata: true map_element :title, to: :title, cdata: false map_element :note, to: :note, cdata: false end end

[source,xml]

<![CDATA[Lutaml]]>Careful

[source,ruby]

Example.from_xml(xml) #<Example:0x0000000104ac7240 @name="John" @description="here is the description" @title="Lutaml" @note="Careful"> Example.new(name: "John", description: "here is the description", title: "Lutaml", note: "Careful").to_xml #LutamlCareful

====

==== Example for mapping

[example]

The following class will parse the XML snippet below:

[source,ruby]

class Ceramic < Lutaml::Model::Serializable attribute :name, :string attribute :description, :string attribute :temperature, :integer

xml do root 'ceramic' map_element 'name', to: :name map_attribute 'temperature', to: :temperature map_content to: :description end end

[source,xml]

Porcelain Vase with celadon glaze.

[source,ruby]

Ceramic.from_xml(xml) #<Ceramic:0x0000000104ac7240 @name="Porcelain Vase", @description=" with celadon glaze.", @temperature=1200> Ceramic.new(name: "Porcelain Vase", description: " with celadon glaze.", temperature: 1200).to_xml #Porcelain Vase with celadon glaze.

====

==== Namespaces

[[root-namespace]] ===== Namespace at root

The namespace method in the xml block sets the namespace for the root element.

Syntax:

.Setting default namespace at the root element [source,ruby]

xml do namespace 'http://example.com/namespace' end

.Setting a prefixed namespace at the root element [source,ruby]

xml do namespace 'http://example.com/namespace', 'prefix' end

.Using the namespace method to set the namespace for the root element [example]

[source,ruby]

class Ceramic < Lutaml::Model::Serializable attribute :type, :string attribute :glaze, :string

xml do root 'Ceramic' namespace 'http://example.com/ceramic' map_element 'Type', to: :type map_element 'Glaze', to: :glaze end end

[source,xml]

PorcelainClear

[source,ruby]

Ceramic.from_xml(xml_file) #<Ceramic:0x0000000104ac7240 @type="Porcelain", @glaze="Clear"> Ceramic.new(type: "Porcelain", glaze: "Clear").to_xml #PorcelainClear

====

.Using the namespace method to set a prefixed namespace for the root element [example]

[source,ruby]

class Ceramic < Lutaml::Model::Serializable attribute :type, :string attribute :glaze, :string

xml do root 'Ceramic' namespace 'http://example.com/ceramic', 'cer' map_element 'Type', to: :type map_element 'Glaze', to: :glaze end end

[source,xml]

<cer:Ceramic xmlns='http://example.com/ceramic'>cer:TypePorcelain</cer:Type>cer:GlazeClear</cer:Glaze></cer:Ceramic>

[source,ruby]

Ceramic.from_xml(xml_file) #<Ceramic:0x0000000104ac7240 @type="Porcelain", @glaze="Clear"> Ceramic.new(type: "Porcelain", glaze: "Clear").to_xml #<cer:Ceramic xmlns="http://example.com/ceramic">cer:TypePorcelain</cer:Type>cer:GlazeClear</cer:Glaze></cer:Ceramic>

====

===== Namespace on attribute

If the namespace is defined on a model attribute that already has a namespace, the mapped namespace will be given priority over the one defined in the class.

Syntax:

[source,ruby]

xml do map_element 'xml_element_name', to: :name_of_attribute, namespace: 'http://example.com/namespace', prefix: 'prefix' end

namespace:: The XML namespace used by this element prefix:: The XML namespace prefix used by this element (optional)

.Using the namespace option to set the namespace for an element [example]

In this example, glz will be used for Glaze if it is added inside the Ceramic class, and glaze will be used otherwise.

[source,ruby]

class Ceramic < Lutaml::Model::Serializable attribute :type, :string attribute :glaze, Glaze

xml do root 'Ceramic' namespace 'http://example.com/ceramic'

map_element 'Type', to: :type
map_element 'Glaze', to: :glaze, namespace: 'http://example.com/glaze', prefix: "glz"

end end

class Glaze < Lutaml::Model::Serializable attribute :color, :string attribute :temperature, :integer

xml do root 'Glaze' namespace 'http://example.com/old_glaze', 'glaze'

map_element 'color', to: :color
map_element 'temperature', to: :temperature

end end

[source,xml]

Porcelain Clear 1050 ----

[source,ruby]

Using the original Glaze class namespace

Glaze.new(color: "Clear", temperature: 1050).to_xml #<glaze:Glaze xmlns="http://example.com/old_glaze">Clear1050</glaze:Glaze>

Using the Ceramic class namespace for Glaze

Ceramic.from_xml(xml_file) #<Ceramic:0x0000000104ac7240 @type="Porcelain", @glaze=#<Glaze:0x0000000104ac7240 @color="Clear", @temperature=1050>> Ceramic.new(type: "Porcelain", glaze: Glaze.new(color: "Clear", temperature: 1050)).to_xml #Porcelain<glz:Glaze xmlns="http://example.com/glaze">Clear1050</glz:Glaze>

====

[[namespace-inherit]] ===== Namespace with inherit option

The inherit option is used at the element level to inherit the namespace from the root element.

Syntax:

[source,ruby]

xml do map_element 'xml_element_name', to: :name_of_attribute, namespace: :inherit end

.Using the inherit option to inherit the namespace from the root element [example]

In this example, the Type element will inherit the namespace from the root.

[source,ruby]

class Ceramic < Lutaml::Model::Serializable attribute :type, :string attribute :glaze, :string attribute :color, :string

xml do root 'Ceramic' namespace 'http://example.com/ceramic', 'cera' map_element 'Type', to: :type, namespace: :inherit map_element 'Glaze', to: :glaze map_attribute 'color', to: :color, namespace: 'http://example.com/color', prefix: 'clr' end end

[source,xml]

<cera:Ceramic xmlns:cera='http://example.com/ceramic' xmlns:clr='http://example.com/color' clr:color="navy-blue"> cera:TypePorcelain</cera:Type> Clear </cera:Ceramic>

[source,ruby]

Ceramic.from_xml(xml_file) #<Ceramic:0x0000000104ac7240 @type="Porcelain", @glaze="Clear", @color="navy-blue"> Ceramic.new(type: "Porcelain", glaze: "Clear", color: "navy-blue").to_xml #<cera:Ceramic xmlns:cera="http://example.com/ceramic"

xmlns:clr='http://example.com/color'

clr:color="navy-blue">

cera:TypePorcelain</cera:Type>

Clear

</cera:Ceramic>

====

[[mixed-content]] ==== Mixed content

In XML there can be tags that contain content mixed with other tags and where whitespace is significant, such as to represent rich text.

[example]

[source,xml]

My name is John Doe, and I'm 28 years old

====

To map this to Lutaml::Model we can use the mixed option in either way:

  • when defining the model;
  • when referencing the model.

NOTE: This feature is not supported by Shale.

To specify mixed content, the mixed: true option needs to be set at the xml block's root method.

Syntax:

[source,ruby]

xml do root 'xml_element_name', mixed: true end

.Applying mixed to treat root as mixed content [example]

[source,ruby]

class Paragraph < Lutaml::Model::Serializable attribute :bold, :string, collection: true # allows multiple bold tags attribute :italic, :string

xml do root 'p', mixed: true

map_element 'bold', to: :bold
map_element 'i', to: :italic

end end

[source,ruby]

Paragraph.from_xml("

My name is John Doe, and I'm 28 years old

") #<Paragraph:0x0000000104ac7240 @bold="John Doe", @italic="28"> Paragraph.new(bold: "John Doe", italic: "28").to_xml #

My name is John Doe, and I'm 28 years old

====

// TODO: How to create mixed content from #new?

[[ordered-content]] ==== Ordered content

ordered: true maintains the order of XML Elements, while mixed: true preserves the order of XML Elements and Content.

NOTE: When both options are used, mixed: true takes precedence.

To specify ordered content, the ordered: true option needs to be set at the xml block's root method.

Syntax:

[source,ruby]

xml do root 'xml_element_name', ordered: true end

.Applying ordered to treat root as ordered content [example]

[source,ruby]

class RootOrderedContent < Lutaml::Model::Serializable attribute :bold, :string attribute :italic, :string attribute :underline, :string

xml do root "RootOrderedContent", ordered: true map_element :bold, to: :bold map_element :italic, to: :italic map_element :underline, to: :underline end end

[source,xml]

Moon 384,400 km bell ----

[source,ruby]

instance = RootOrderedContent.from_xml(xml) #<RootOrderedContent:0x0000000104ac7240 @bold="bell", @italic="384,400 km", @underline="Moon"> instance.to_xml #Moon384,400 kmbell

Without Ordered True:

[source,ruby]

class RootOrderedContent < Lutaml::Model::Serializable attribute :bold, :string attribute :italic, :string attribute :underline, :string

xml do root "RootOrderedContent" map_element :bold, to: :bold map_element :italic, to: :italic map_element :underline, to: :underline end end

[source,xml]

Moon 384,400 km bell ----

[source,ruby]

instance = RootOrderedContent.from_xml(xml) #<RootOrderedContent:0x0000000104ac7240 @bold="bell", @italic="384,400 km", @underline="Moon"> instance.to_xml #\n bell\n 384,400 km\n Moon\n

====

==== Sequence

The sequence directive specifies that the defined attributes must appear in a specified order in XML.

NOTE: Sequence only supports map_element mappings.

Syntax:

[source,ruby]

xml do sequence do map_element 'xml_element_name_1', to: :name_of_attribute_1 map_element 'xml_element_name_2', to: :name_of_attribute_2 # Add more map_element lines as needed to establish a complete sequence end end

The appearance of the elements in the XML document must match the order defined in the sequence block. In this case, the <xml_element_name_1> element should appear before the <xml_element_name_2> element.

.Using the sequence keyword to define a set of elements in desired order. [example]

[source,ruby]

class Kiln < Lutaml::Model::Serializable attribute :id, :string attribute :name, :string attribute :type, :string attribute :color, :string

xml do sequence do map_element :id, to: :id map_element :name, to: :name map_element :type, to: :type map_element :color, to: :color end end end

class KilnCollection < Lutaml::Model::Serializable attribute :kiln, Kiln, collection: 1..2

xml do root "collection" map_element "kiln", to: :kiln end end

[source,xml]

1 Nick Hard Black 2 John Soft White ----

[source,ruby]

parsed = Kiln.from_xml(xml)

=> [

#<Kiln:0x0000000104ac7240 @id="1", @name="Nick", @type="Hard", @color="Black">, #<Kiln:0x0000000104ac7240 @id="2", @name="John", @type="Soft", @color="White"> #]

bad_xml = <<~HERE

Nick 1 Black Hard HERE > parsed = Kiln.from_xml(bad_xml) # => Lutaml::Model::ValidationError: Element 'name' is out of order in 'kiln' element ---- ====

NOTE: For importing model mappings inside a sequence block, refer to <<import-model-mappings-inside-sequence, Importing model mappings inside a sequence>>.

[[xml-schema-location]] ==== Automatic support of xsi:schemaLocation

The https://www.w3.org/TR/xmlschema-1/#xsi_schemaLocation[W3C "XMLSchema-instance"] namespace describes a number of attributes that can be used to control the behavior of XML processors. One of these attributes is xsi:schemaLocation.

The xsi:schemaLocation attribute locates schemas for elements and attributes that are in a specified namespace. Its value consists of pairs of a namespace URI followed by a relative or absolute URL where the schema for that namespace can be found.

Usage of xsi:schemaLocation in an XML element depends on the declaration of the XML namespace of xsi, i.e. xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance". Without this namespace LutaML will not be able to serialize the xsi:schemaLocation attribute.

NOTE: It is most commonly attached to the root element but can appear further down the tree.

The following snippet shows how xsi:schemaLocation is used in an XML document:

[source,xml]

<cera:Ceramic xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:cera="http://example.com/ceramic" xmlns:clr='http://example.com/color' xsi:schemaLocation= "http://example.com/ceramic http://example.com/ceramic.xsd http://example.com/color http://example.com/color.xsd" clr:color="navy-blue"> cera:TypePorcelain</cera:Type> Clear </cera:Ceramic>

LutaML::Model supports the xsi:schemaLocation attribute in all XML serializations by default, through the schema_location attribute on the model instance object.

.Retrieving and setting the xsi:schemaLocation attribute in XML serialization [example]

In this example, the xsi:schemaLocation attribute will be automatically supplied without the explicit need to define in the model, and allows for round-trip serialization.

[source,ruby]

class Ceramic < Lutaml::Model::Serializable attribute :type, :string attribute :glaze, :string attribute :color, :string

xml do root 'Ceramic' namespace 'http://example.com/ceramic', 'cera' map_element 'Type', to: :type, namespace: :inherit map_element 'Glaze', to: :glaze map_attribute 'color', to: :color, namespace: 'http://example.com/color', prefix: 'clr' end end

xml_content = <<~HERE <cera:Ceramic xmlns:cera="http://example.com/ceramic" xmlns:clr="http://example.com/color" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" clr:color="navy-blue" xsi:schemaLocation=" http://example.com/ceramic http://example.com/ceramic.xsd http://example.com/color http://example.com/color.xsd "> cera:TypePorcelain</cera:Type> Clear </cera:Ceramic> HERE

[source,ruby]

c = Ceramic.from_xml(xml_content) => #<Ceramic:0x00000001222bdd60 ... schema_loc = c.schema_location #<Lutaml::Model::SchemaLocation:0x0000000122773760 ... schema_loc => #<Lutaml::Model::SchemaLocation:0x0000000122773760 @namespace="http://www.w3.org/2001/XMLSchema-instance", @original_schema_location="http://example.com/ceramic http://example.com/ceramic.xsd http://example.com/color http://example.com/color.xsd", @prefix="xsi", @schema_location= [#<Lutaml::Model::Location:0x00000001222bd018 @location="http://example.com/ceramic.xsd", @namespace="http://example.com/ceramic">, #<Lutaml::Model::Location:0x00000001222bcfc8 @location="http://example.com/color.xsd", @namespace="http://example.com/color">]> new_c = Ceramic.new(type: "Porcelain", glaze: "Clear", color: "navy-blue", schema_location: schema_loc).to_xml puts new_c

<cera:Ceramic

xmlns:cera="http://example.com/ceramic"

xmlns:clr="http://example.com/color"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

clr:color="navy-blue"

xsi:schemaLocation="

http://example.com/ceramic http://example.com/ceramic.xsd

http://example.com/color http://example.com/color.xsd

">

cera:TypePorcelain</cera:Type>

cera:GlazeClear</cera:Glaze>

</cera:Ceramic>

====

NOTE: For details on xsi:schemaLocation, please refer to the https://www.w3.org/TR/xmlschema-1/#xsi_schemaLocation[W3C XML standard].

==== Character encoding

===== General

Lutaml::Model XML adapters use a default encoding of UTF-8 for both input and output.

Serialization data to be parsed (deserialization) and serialization data to be exported (serialization) may be in a different character encoding than the default encoding used by the Lutaml::Model XML adapter. This mismatch may lead to incorrect data reading or incompatibilities when exporting data.

The possible values for setting character encoding to are:

  • A valid encoding value, e.g. UTF-8, Shift_JIS, ASCII;

  • nil to use the default encoding of the adapter. The behavior differs based on the adapter used.

** Nokogiri: UTF-8. The encoding is set to the default encoding of the Nokogiri library, which is UTF-8.

** Oga: UTF-8. The encoding is set to the default encoding of the Oga library, which uses UTF-8.

** Ox: ASCII-8bit. The encoding is set to the default encoding of the Ox library, which uses ASCII-8bit.

When the encoding option is not set, the default encoding of UTF-8 is used.

===== Serialization character encoding (exporting)

====== General

There are two ways to set the character encoding of the XML document during serialization:

Instance setting:: Setting the instance-level encoding option by setting ModelClassInstance.encoding('...'). This setting only affects serialization.

Per-export setting:: Setting the encoding option when calling for serialization action using the ModelClassInstance.to_xml(..., encoding: ...) method.

[[encoding-instance-setting]] ====== Instance setting

The encoding value of an instance sets the character encoding of the XML document during serialization.

Syntax:

[source,ruby]

ModelClassInstance.encoding = {encoding_value}

Where,

ModelClassInstance:: An instance of the class that inherits from Lutaml::Model::Serializable. {encoding_value}:: The encoding of the output data.

.Character encoding set to instance is reflected in its serialization output [example]

[source,ruby]

class JapaneseCeramic < Lutaml::Model::Serializable attribute :glaze_type, :string attribute :description, :string

xml do root 'JapaneseCeramic' map_attribute 'glazeType', to: :glaze_type map_element 'description' to: :description end end

[source,ruby]

Create a new instance with UTF-8 data

instance = JapaneseCeramic.new(glaze_type: "志野釉", description: "東京国立博物館コレクションの篠茶碗「橋本」(桃山時代)") #=> #<JapaneseCeramic:0x0000000104ac7240 @glaze_type="志野釉", @description="東京国立博物館コレクションの篠茶碗「橋本」(桃山時代)">

Set character encoding to Shift_JIS

instance.encoding = "Shift_JIS" #=> "Shift_JIS"

Serialize the instance

serialization_output = instance.to_xml #=> #\x{5FD8}\x{91CE}\x{91C9}\x{6771}\x{4EAC}\x{56FD}\x{7ACB}\x{535A}\x{7269}\x{9928}\x{30B3}\x{30EC}\x{30AF}\x{30B7}\x{30E7}\x{30F3}\x{306E}\x{7BC0}\x{8336}\x{7897}\x{300C}\x{6A4B}\x{672C}\x{300D}\x{FF08}\x{6853}\x{5C71}\x{6642}\x{4EE3}\x{FF09}

Check character encoding of output

serialization_output.encoding #=> "Shift_JIS"

====

====== Per-export setting

The encoding option is used in the ModelClass#to_xml(..., encoding: ...) call to set the character encoding of the XML document during serialization.

The per-export encoding setting supersedes the instance-level encoding setting.

Syntax:

[source,ruby]

ModelClassInstance.to_xml(encoding: {encoding_value})

Where,

ModelClassInstance:: An instance of the class that inherits from Lutaml::Model::Serializable. {encoding_value}:: The encoding of the output data.

[example]

The following class will parse the XML snippet below:

[source,ruby]

class Ceramic < Lutaml::Model::Serializable attribute :potter, :string attribute :description, :string attribute :temperature, :integer

xml do root 'ceramic' map_element 'potter', to: :potter map_content to: :description end end

[source,xml]

John & Jane A ∑ series of ∏ porcelain µ vases.

[source,ruby]

Object with attributes

ceramic_instance = Ceramic.new(potter: "John & Jane", description: " A ∑ series of ∏ porcelain µ vases.") #<Ceramic:0x0000000104ac7240 @potter="John & Jane", @description=" A ∑ series of ∏ porcelain µ vases.">

Parsing the XML snippet with the default encoding of UTF-8

ceramic_parsed = Ceramic.from_xml(xml) #<Ceramic:0x0000000104ac7242 @potter="John & Jane", @description=" A ∑ series of ∏ porcelain µ vases.">

Object with attributes is equal to the parsed object

ceramic_parsed == ceramic_instance

true

Using the default encoding of UTF-8

ceramic_instance.to_xml #John & Jane A ∑ series of ∏ porcelain µ vases.

Using the default encoding of the adapter, which is UTF-8 in this case

ceramic_instance.to_xml(encoding: nil) #John & Jane A ∑ series of ∏ porcelain µ vases.

Using ASCII encoding

ceramic_instance.to_xml(encoding: "ASCII") #John & Jane A ∑ series of ∏ porcelain µ vases.

====

.Character encoding set at to_xml overrides instance encoding [example]

[source,ruby]

class JapaneseCeramic < Lutaml::Model::Serializable attribute :glaze_type, :string attribute :description, :string

xml do root 'JapaneseCeramic' map_attribute 'glazeType', to: :glaze_type map_element 'description' to: :description end end

[source,ruby]

Create a new instance with UTF-8 data

instance = JapaneseCeramic.new(glaze_type: "志野釉", description: "東京国立博物館コレクションの篠茶碗「橋本」(桃山時代)") #=> #<JapaneseCeramic:0x0000000104ac7240 @glaze_type="志野釉", @description="東京国立博物館コレクションの篠茶碗「橋本」(桃山時代)">

Set character encoding to Shift_JIS

instance.encoding = "Shift_JIS" #=> "Shift_JIS"

Serialize the instance

serialization_output = instance.to_xml(encoding: "UTF-8") #=> #志野釉東京国立博物館コレクションの篠茶碗「橋本」(桃山時代)

Check character encoding of output

serialization_output.encoding #=> "UTF-8"

====

===== Deserialization character encoding (parsing)

The character encoding of the XML document being parsed is specified using the encoding option when the ModelClass.from_{format}(...) is called.

Syntax:

[source,ruby]

ModelClass.from_{format}(string_in_format, encoding: {encoding_value})

Where,

ModelClass:: The class that inherits from Lutaml::Model::Serializable. {format}:: The format of the input data, e.g. xml, json, yaml, toml. string_in_format:: The input data in the specified format. {encoding_value}:: The encoding of the input data.

.Setting the encoding option during parsing data not encoded in the default encoding (UTF-8) [example]

Using the definition of JapaneseCeramic at <>.

This XML snippet is in Shift-JIS.

[source,xml]

\x{5FD8}\x{91CE}\x{91C9} \x{6771}\x{4EAC}\x{56FD}\x{7ACB}\x{535A}\x{7269}\x{9928}\x{30B3}\x{30EC}\x{30AF}\x{30B7}\x{30E7}\x{30F3}\x{306E}\x{7BC0}\x{8336}\x{7897}\x{300C}\x{6A4B}\x{672C}\x{300D}\x{FF08}\x{6853}\x{5C71}\x{6642}\x{4EE3}\x{FF09} ----

[source,ruby]

Parse the XML snippet with the encoding of Shift_JIS

instance = JapaneseCeramic.from_xml(xml, encoding: "Shift_JIS") #=> #<JapaneseCeramic:0x0000000104ac7240 @glaze_type="志野釉", @description="東京国立博物館コレクションの篠茶碗「橋本」(桃山時代)">

Check character encoding of the instance

instance.encoding #=> "Shift_JIS"

Serialize the instance using UTF-8

serialization_output = instance.to_xml(encoding: "UTF-8") #=> #志野釉東京国立博物館コレクションの篠茶碗「橋本」(桃山時代) serialization_output.encoding #=> "UTF-8"

====

.When the encoding option is not set, the default encoding of the adapter is used [example]

Using the definition of JapaneseCeramic at <>.

This XML snippet is in UTF-8.

[source,xml]

志野釉 東京国立博物館コレクションの篠茶碗「橋本」(桃山時代) ----

In adapters that use a default encoding of UTF-8, the content is parsed properly.

[source,ruby]

instance = JapaneseCeramic.from_xml(xml, encoding: nil) #=> #<JapaneseCeramic:0x0000000104ac7240 @glaze_type="志野釉", @description="東京国立博物館コレクションの篠茶碗「橋本」(桃山時代)"> instance.encoding #=> "UTF-8" serialization_output = instance.to_xml #=> #志野釉東京国立博物館コレクションの篠茶碗「橋本」(桃山時代) serialization_output.encoding #=> "UTF-8"

In adapters that use a default encoding of ASCII-8bit, the content becomes malformed.

[source,ruby]

instance = JapaneseCeramic.from_xml(xml, encoding: nil) #=> #<JapaneseCeramic:0x0000000104ac7240 @glaze_type="�菑�", @description="�東京国立博物館コレクションの篠茶碗�橋本�桃山時代�"> instance.encoding #=> "ASCII-8bit" serialization_output = instance.to_xml #=> #�菑��東京国立博物館コレクションの篠茶碗�橋本�桃山時代� serialization_output.encoding #=> "ASCII-8bit"

====

.Using an invalid encoding to deserialize causes data corruption [example]

Using the definition of JapaneseCeramic at <>.

This XML snippet is in UTF-8.

[source,xml]

志野釉 東京国立博物館コレクションの篠茶碗「橋本」(桃山時代) ----

[source,ruby]

JapaneseCeramic.from_xml(xml, encoding: "Shift_JIS") #=> #<JapaneseCeramic:0x0000000104ac7240 @glaze_type="�菑���p���P", @description="�東京国立博物館コレクションの篠茶碗�橋本�桃山時代�">

====

=== Key value data models

==== General

Key-value data models share a similar structure where data is stored as key-value pairs.

Lutaml::Model works with these formats in a similar way.

Key-value data models supported are identified by their short name:

hsh:: Hash (Ruby Hash class) json:: JSON yaml:: YAML toml:: TOML key_value:: A way to configure key-value mappings for all supported key-value data models.

==== Mapping

The map method is used to define key-value mappings.

Syntax:

[source,ruby]

{key_value_type_short} do <1> map 'key_value_model_attribute_name', to: :name_of_attribute end

<1> key_value_type_short is the key-value data model's short name.

.Creating a key-value data model mapping for only the JSON format [example]

[source,ruby]

json do map :color, to: :color map :desc, to: :description end

====

.Creating a key-value data model mapping for all key-value formats [example]

[source,ruby]

key_value do map :color, to: :color map :desc, to: :description end

====

==== Unified mapping

The key_value method is a streamlined way to map all attributes for serialization into key-value formats including Hash, JSON, YAML, and TOML.

If there is no definite differentiation between the key value formats, the key_value method simplifies defining mappings and improves code readability.

.Using the map method to define the same mappings across all key-value formats [example]

This example shows how to define a key-value data model with the key_value method which maps the same attributes across all key-value formats.

[source,ruby]

class CeramicModel < Lutaml::Model::Serializable attribute :color, :string attribute :glaze, :string attribute :description, :string

key_value do # or any other key-value data model map :color, to: :color map :glz, to: :glaze map :desc, to: :description end end

[source,json]

{ "color": "Navy Blue", "glz": "Clear", "desc": "A ceramic with a navy blue color and clear glaze." }

[source,yaml]

color: Navy Blue glz: Clear desc: A ceramic with a navy blue color and clear glaze.

[source,ruby]

CeramicModel.from_json(json) #<CeramicModel:0x0000000104ac7240 @color="Navy Blue", @glaze="Clear", @description="A ceramic with a navy blue color and clear glaze."> CeramicModel.new(color: "Navy Blue", glaze: "Clear", description: "A ceramic with a navy blue color and clear glaze.").to_json #{"color"=>"Navy Blue", "glz"=>"Clear", "desc"=>"A ceramic with a navy blue color and clear glaze."}

====

==== Specific format mappings

Specific key value formats can be mapping independently of other formats.

.Using the map method to define key-value mappings per format [example]

[source,ruby]

class Example < Lutaml::Model::Serializable attribute :name, :string attribute :value, :integer

hsh do map 'name', to: :name map 'value', to: :value end

json do map 'name', to: :name map 'value', to: :value end

yaml do map 'name', to: :name map 'value', to: :value end

toml do map 'name', to: :name map 'value', to: :value end end

[source,json]

{ "name": "John Doe", "value": 28 }

[source,ruby]

Example.from_json(json) #<Example:0x0000000104ac7240 @name="John Doe", @value=28> Example.new(name: "John Doe", value: 28).to_json #{"name"=>"John Doe", "value"=>28}

====

[[key-value-map-all]] ==== Mapping all key-value content

The map_all tag captures and maps all content within a serialization format into a single attribute in the target Ruby object.

The use case for map_all is to tell Lutaml::Model to not parse the content at all, and instead handle it as a raw string.

NOTE: The corresponding method for XML is at <>.

WARNING: Notice that usage of mapping all will lead to incompatibility between serialization formats, i.e. the raw string content will not be portable as objects are across different formats.

This is useful when the content needs to be handled as-is without parsing into individual attributes.

The map_all tag is exclusive and cannot be combined with other mappings, ensuring it captures the entire content.

NOTE: An error is raised if map_all is defined alongside any other mapping in the same mapping context.

Syntax:

[source,ruby]

hsh | json | yaml | toml | key_value do map_all to: :name_of_attribute end

.Using map_all to capture all content across different formats [example]

[source,ruby]

class Document < Lutaml::Model::Serializable attribute :content, :string

hsh do map_all to: :content end

json do map_all to: :content end

yaml do map_all to: :content end

toml do map_all to: :content end end

For JSON: [source,json]

{ "sections": [ { "title": "Introduction", "text": "Chapter 1" }, { "title": "Conclusion", "text": "Final chapter" } ], "metadata": { "author": "John Doe", "date": "2024-01-15" } }

For YAML: [source,yaml]

sections:

  • title: Introduction text: Chapter 1
  • title: Conclusion text: Final chapter metadata: author: John Doe date: 2024-01-15

The content is preserved exactly as provided:

[source,ruby]

doc = Document.from_json(json_content) puts doc.content

"{"sections":[{"title":"Introduction","text":"Chapter 1"},{"title":"Conclusion","text":"Final chapter"}],"metadata":{"author":"John Doe","date":"2024-01-15"}}"

doc = Document.from_yaml(yaml_content) puts doc.content

"sections:\n - title: Introduction\n text: Chapter 1\n - title: Conclusion\n text: Final chapter\nmetadata:\n author: John Doe\n date: 2024-01-15\n"

====

==== Nested attribute mappings

The map method can also be used to map nested key-value data models by referring to a Lutaml::Model class as an attribute class.

[example]

[source,ruby]

class Glaze < Lutaml::Model::Serializable attribute :color, :string attribute :temperature, :integer

json do map 'color', to: :color map 'temperature', to: :temperature end end

class Ceramic < Lutaml::Model::Serializable attribute :type, :string attribute :glaze, Glaze

json do map 'type', to: :type map 'glaze', to: :glaze end end

[source,json]

{ "type": "Porcelain", "glaze": { "color": "Clear", "temperature": 1050 } }

[source,ruby]

Ceramic.from_json(json) #<Ceramic:0x0000000104ac7240 @type="Porcelain", @glaze=#<Glaze:0x0000000104ac7240 @color="Clear", @temperature=1050>> Ceramic.new(type: "Porcelain", glaze: Glaze.new(color: "Clear", temperature: 1050)).to_json #{"type"=>"Porcelain", "glaze"=>{"color"=>"Clear", "temperature"=>1050}}

====

==== Collection with keyed elements (keyed collection)

===== General

NOTE: This feature is for key-value data model serialization and deserialization only.

The map method with the root_mappings option is used for key-value data that is keyed using an attribute value.

In other words, the key of a key-value pair in a collection is actually the value of an attribute that belongs to the value.

Simply put, the following two data structures are considered to have the same data:

[[collection-keyed-by-value]] .A YAML collection as a keyed object, each key with value of the id attribute [source,yaml]

vase1: name: Imperial Vase bowl2: name: 18th Century Bowl

[[collection-unkeyed-by-value]] .A YAML collection as an array, the id attribute value located inside each element [source,yaml]

  • id: vase1 name: Imperial Vase
  • id: bowl2 name: 18th Century Bowl

There are key difference between these two data structures:

  • The <<collection-keyed-by-value,keyed object>> (first data structure) ensures uniqueness of the id attribute value across the collection, while the <<collection-unkeyed-by-value,array>> (second data structure) does not.

  • The value of the id attribute in the first data structure exists outside of the formal structure of the data object, instead, it only exists at the collection level. On the other hand, the value exists inside the structure of the data object in the second data structure.

The map method with the root_mappings option, in practice, parses the first data structure in the same way that you would access / manipulate the second data structure, while retaining the serialization semantics of using an attribute as key.

As a result, usage of lutaml-model across both types of collections are identical (except when serialized).

Syntax:

[source,ruby]

class SomeKeyedCollection < Lutaml::Model::Serializable attribute :name_of_attribute, AttributeValueType, collection: true

hsh | json | yaml | toml | key_value do map to: :name_of_attribute, <1> root_mappings: { <2> # :key is a reserved keyword value_type_attribute_name_for_key: :key, <3> # :value is a reserved keyword (and optional) value_type_attribute_name_for_value: :value, <4> # [path name] represents the path to access the value in the # serialization data model to be assigned to # AttributeValueType.value_type_attribute_name_for_custom_type value_type_attribute_name_for_custom_type: [path name] <5> } end end

class AttributeValueType < Lutaml::Model::Serializable attribute :value_type_attribute_name_for_key, :string attribute :value_type_attribute_name_for_value, :string attribute :value_type_attribute_name_for_custom_type, CustomType end

<1> The map option indicates that this class represents the root of the serialization object being passed in. The name_of_attribute is the name of the attribute that will hold the collection data. (Mandatory) <2> The root_mappings keyword specifies what the collection key represents and and value for model. (Mandatory) <3> The key keyword specifies the attribute name of the individual collection object type that represents its key used in the collection. (Mandatory) <4> The value keyword specifies the attribute name of the individual collection object type that represents its data used in the collection. (Optional, if not specified, the entire object is used as the value.) <5> The value_type_attribute_name_for_custom_type is the name of the attribute inside the individual collection object (AttributeValueType) that will hold the value accessible in the serialization data model fetched at [path name].

The mapping syntax here is similar to that of <> except that the :key and :value keywords are allowed in addition to {path}.

There are 3 cases when working with a keyed collection:

. Case 1: Only move the "key" into the collection object.

. Case 2: Move the "key" into the collection object, override all other mappings. Maps :key and another attribute, then we override all the other mappings (clean slate)

. Case 3: Move the "key" into the collection object to an attribute, map the entire "value" to another attribute of the collection object.

===== Case 1: Only move the "key" into the collection object

In this case, the "key" of the keyed collection is moved into the collection object, and all other mappings are left as they are.

When the "key" is moved into the collection object, the following happens:

  • The "key" of the keyed collection maps to a particular attribute of the collection's instance object.
  • The "value" of the keyed collection (with its various content) maps to the collection's instance object following the collection's instance object type's default mappings.

The root_mappings option should only contain one mapping, and the mapping must lead to the :key keyword.

Syntax:

[source,ruby]

class SomeKeyedCollection < Lutaml::Model::Serializable attribute :name_of_attribute, AttributeValueType, collection: true

hsh | json | yaml | toml | key_value do map to: :name_of_attribute, root_mappings: { value_type_attribute_name_for_key: :key, <1> } end end

class AttributeValueType < Lutaml::Model::Serializable attribute :value_type_attribute_name_for_key, :string attribute :value_type_attribute_name_for_value, :string attribute :value_type_attribute_name_for_custom_type, CustomType end

<1> The :key keyword specifies that the "key" of the keyed collection maps to the value_type_attribute_name_for_key attribute of the collection's instance object (i.e. AttributeValueType).

.Using map with root_mappings (only key) to map a keyed collection into individual models [example]

Given this data:

[source,yaml]

vase1: name: Imperial Vase bowl2: name: 18th Century Bowl

A model can be defined for this YAML as follows:

[source,ruby]

This is a normal Lutaml::Model class

class Ceramic < Lutaml::Model::Serializable attribute :ceramic_id, :string attribute :ceramic_name, :string

key_value do map 'id', to: :ceramic_id map 'name', to: :ceramic_name end end

This is Lutaml::Model class that represents the collection of Ceramic objects

class CeramicCollection < Lutaml::Model::Serializable attribute :ceramics, Ceramic, collection: true

key_value do map to: :ceramics, # All data goes to the ceramics attribute root_mappings: { # The key of an object in this collection is mapped to the ceramic_id # attribute of the Ceramic object. ceramic_id: :key # "key" is a reserved keyword } end end

[source,ruby]

Parsing the YAML collection with dynamic data keys

ceramic_collection = CeramicCollection.from_yaml(yaml) #<CeramicCollection:0x0000000104ac7240 @ceramics= [#<Ceramic:0x0000000104ac6e30 @ceramic_id="vase1", @ceramic_name="Imperial Vase">, #<Ceramic:0x0000000104ac58f0 @ceramic_id="bowl2", @ceramic_name="18th Century Bowl">]

NOTE: When an individual Ceramic object is serialized, the id attribute is

the original key in the incoming YAML data, and because there were no mappings defined along with the :key, everyting is mapped to the Ceramic object using the mappings defined in the Ceramic class.

first_ceramic = ceramic_collection.ceramics.first puts first_ceramic.to_yaml =>

---

id: vase1

name: Imperial Vase

NOTE: When in a collection, the ceramic_id attribute is used to key the data,

and it disappears from the individual object.

puts ceramic_collection.to_yaml =>

---

vase1:

name: Imperial Vase

bowl2:

name: 18th Century Bowl

NOTE: When the collection is serialized, the ceramic_id attribute is used to

key the data. This is defined through the map with root_mappings method in

CeramicCollection.

new_collection = CeramicCollection.new(ceramics: [ Ceramic.new(ceramic_id: "vase1", ceramic_name: "Imperial Vase"), Ceramic.new(ceramic_id: "bowl2", ceramic_name: "18th Century Bowl") ]) puts new_collection.to_yaml =>

---

vase1:

name: Imperial Vase

bowl2:

name: 18th Century Bowl

====

===== Case 2: Mapping the key and complex values

In this use case, the "key" of the keyed collection is moved into the collection object, and all other mappings are overridden.

When more than one mapping rule exists in the root_mappings option, the root_mappings option will override all other mappings in the collection object.

When the "key" is moved into the collection object, the following happens:

  • The "key" of the keyed collection maps to a particular attribute of the collection's instance object.

  • The data of the "value" of the keyed collection have their own mappings overridden by the new mapping rules of the root_mappings option.

The root_mappings option can contain more than one mapping, with one of the mapping rules leading to the :key keyword.

Syntax:

[source,ruby]

class SomeKeyedCollection < Lutaml::Model::Serializable attribute :name_of_attribute, AttributeValueType, collection: true

hsh | json | yaml | toml | key_value do map to: :name_of_attribute, root_mappings: { value_type_attribute_name_for_key: :key, <1> value_type_attribute_name_for_value_data_1: "serialization_format_name_1", <2> value_type_attribute_name_for_value_data_2: "serialization_format_name_2", value_type_attribute_name_for_value_data_3: ["path name", ...] <3> # ... } end end

class AttributeValueType < Lutaml::Model::Serializable attribute :value_type_attribute_name_for_key, :string attribute :value_type_attribute_name_for_value_data_1, :string attribute :value_type_attribute_name_for_value_data_2, SomeType attribute :value_type_attribute_name_for_value_data_3, MoreType

...

end

<1> The :key keyword specifies that the "key" of the keyed collection maps to the value_type_attribute_name_for_key attribute of the collection's instance object (i.e. AttributeValueType). <2> The serialization_format_name_1 target specifies that the serialization_format_name_2 key of the keyed collection value maps to the value_type_attribute_name_for_value_data_1 attribute of the collection's instance object. <3> The [path name] target specifies to fetch from [path name] in the serialization data model to be assigned to the value_type_attribute_name_for_value_data_3 attribute of the collection's instance object.

When the root_mappings mapping contains more than one mapping rule that is not to :key or :value, the root_mappings mapping will override all other mappings in the collection object. This means that unmapped attributes in root_mappings will not be incorporated in the collection instance objects.

.Using map with root_mappings (key and complex value) to map a keyed collection into individual models [example]

[source,yaml]

"vase1": type: "vase" details: name: "Imperial Vase" insignia: "Tang Tianbao" urn: primary: "urn:ceramic:vase:vase1" "bowl2": type: "bowl" details: name: "18th Century Bowl" insignia: "Ming Wanli" urn: primary: "urn:ceramic:bowl:bowl2"

A model can be defined for this YAML as follows:

[source,ruby]

This is a normal Lutaml::Model class

class CeramicDetails < Lutaml::Model::Serializable attribute :name, :string attribute :insignia, :string

key_value do map 'name', to: :name map 'insignia', to: :insignia end end

This is a normal Lutaml::Model class

class Ceramic < Lutaml::Model::Serializable attribute :ceramic_id, :string attribute :ceramic_type, :string attribute :ceramic_details, CeramicDetails attribute :ceramic_urn, :string

key_value do map 'id', to: :ceramic_id map 'type', to: :ceramic_type map 'details', to: :ceramic_details map 'urn', to: :ceramic_urn end end

This is Lutaml::Model class that represents the collection of Ceramic objects

class CeramicCollection < Lutaml::Model::Serializable attribute :ceramics, Ceramic, collection: true

key_value do map to: :ceramics, # All data goes to the ceramics attribute root_mappings: { # The key of an object in this collection is mapped to the ceramic_id # attribute of the Ceramic object. # (e.g. vase1, bowl2) ceramic_id: :key, ceramic_type: :type, ceramic_details: "details", ceramic_urn: ["urn", "primary"] } end end

The output becomes:

[source,ruby]

ceramics_collection = CeramicCollection.from_yaml(yaml) => #<CeramicCollection:0x0000000107a2cf30 @ceramics= [#<Ceramic:0x0000000107a2cf30 @ceramic_id="vase1", @ceramic_type="vase", @ceramic_details= #<CeramicDetails:0x0000000107a2cf30 @name="Imperial Vase", @insignia="Tang Tianbao">, @ceramic_urn="urn:ceramic:vase:vase1">, #<Ceramic:0x0000000107a2cf30 @ceramic_id="bowl2", @ceramic_type="bowl", @ceramic_details= #<CeramicDetails:0x0000000107a2cf30 @name="18th Century Bowl", @insignia="Ming Wanli"> @ceramic_urn="urn:ceramic:bowl:bowl2">]

first_ceramic = ceramics_collection.ceramics.first puts first_ceramic.to_yaml =>

---

id: vase1

type: vase

details:

name: Imperial Vase

insignia: Tang Tianbao

urn: urn:ceramic:vase:vase1

new_collection = CeramicCollection.new(ceramics: [ Ceramic.new(ceramic_id: "vase1", ceramic_type: "vase", ceramic_urn: "urn:ceramic:vase:vase1", ceramic_details: CeramicDetails.new( name: "Imperial Vase", insignia: "Tang Tianbao") ), Ceramic.new(ceramic_id: "bowl2", ceramic_type: "bowl", ceramic_urn: "urn:ceramic:vase:bowl2", ceramic_details: CeramicDetails.new( name: "18th Century Bowl", insignia: "Ming Wanli") ) ]) new_collection.to_yaml

---

vase1:

type: vase

details:

name: Imperial Vase

insignia: Tang Tianbao

urn:

primary: urn:ceramic:vase:vase1

bowl2:

type: bowl

details:

name: 18th Century Bowl

insignia: Ming Wanli

urn:

primary: urn:ceramic:bowl:bowl2

====

===== Case 3: Mapping the key and delegating value to an inner object

In this use case, the "key" of the keyed collection is moved into the collection object to an attribute, and the entire "value" of the keyed collection is mapped to another attribute of the collection object.

When the "key" is moved into the collection object, the following happens:

  • The "key" of the keyed collection maps to a particular attribute of the collection's instance object.

  • The data of the "value" of the keyed collection will be entirely mapped into an attribute of the collection's instance object.

  • The original mapping of the "value" attribute of the collection's instance object is retained.

The root_mappings option should only contain two mappings, and the mappings must lead to both the :key and :value keywords.

Syntax:

[source,ruby]

class SomeKeyedCollection < Lutaml::Model::Serializable attribute :name_of_attribute, AttributeValueType, collection: true

hsh | json | yaml | toml | key_value do map to: :name_of_attribute, root_mappings: { value_type_attribute_name_for_key: :key, <1> value_type_attribute_name_for_value: :value <2> } end end

class AttributeValueType < Lutaml::Model::Serializable attribute :value_type_attribute_name_for_key, :string attribute :value_type_attribute_name_for_value, SomeObject end

<1> The :key keyword specifies that the "key" of the keyed collection maps to the value_type_attribute_name_for_key attribute of the collection's instance object (i.e. AttributeValueType). <2> The :value keyword specifies that the entire "value" of the keyed collection maps to the value_type_attribute_name_for_value attribute of the collection's instance object (i.e. SomeObject).

When the root_mappings mapping contains more than one mapping rule, the root_mappings mapping will override all other mappings in the collection object. This means that unmapped attributes in root_mappings will not be incorporated in the collection instance objects.

.Using map with root_mappings (key and value) to map a keyed collection into individual models [example]

Given this data:

[source,yaml]

vase1: name: Imperial Vase insignia: "Tang Tianbao" bowl2: name: 18th Century Bowl insignia: "Ming Wanli"

A model can be defined for this YAML as follows:

[source,ruby]

This is a normal Lutaml::Model class

class CeramicDetails < Lutaml::Model::Serializable attribute :name, :string attribute :insignia, :string

key_value do map 'name', to: :name map 'insignia', to: :insignia end end

This is a normal Lutaml::Model class

class Ceramic < Lutaml::Model::Serializable attribute :ceramic_id, :string attribute :ceramic_details, CeramicDetails

key_value do map 'id', to: :ceramic_id map 'details', to: :ceramic_details end end

This is Lutaml::Model class that represents the collection of Ceramic objects

class CeramicCollection < Lutaml::Model::Serializable attribute :ceramics, Ceramic, collection: true

key_value do map to: :ceramics, # All data goes to the ceramics attribute root_mappings: { # The key of an object in this collection is mapped to the ceramic_id # attribute of the Ceramic object. # (e.g. vase1, bowl2) ceramic_id: :key, # The value of an object in this collection is mapped to the # ceramic_details attribute of the Ceramic object. # (e.g. name: 18th Century Bowl, insignia: "Ming Wanli" ceramic_details: :value } end end

[source,ruby]

Parsing the YAML collection with dynamic data keys

ceramic_collection = CeramicCollection.from_yaml(yaml) #<CeramicCollection:0x0000000104ac7240 @ceramics= [#<Ceramic:0x0000000104ac6e30 @ceramic_id="vase1", @ceramic_details= #<CeramicDetails:0x0000000104ac6e30 @name="Imperial Vase", @insignia="Tang Tianbao">, #<Ceramic:0x0000000104ac58f0 @ceramic_id="bowl2", @ceramic_details= #<CeramicDetails:0x0000000104ac58f0 @name="18th Century Bowl", @insignia="Ming Wanli">]

NOTE: When an individual Ceramic object is serialized, the id attribute is

the original key in the incoming YAML data.

first_ceramic = ceramic_collection.ceramics.first puts first_ceramic.to_yaml =>

---

id: vase1

details:

name: Imperial Vase

insignia: Tang Tianbao

NOTE: When in a collection, the ceramic_id attribute is used to key the data,

and it disappears from the individual object.

puts ceramic_collection.to_yaml =>

---

vase1:

name: Imperial Vase

insignia: Tang Tianbao

bowl2:

name: 18th Century Bowl

insignia: Ming Wanli

NOTE: When the collection is serialized, the ceramic_id attribute is used to

key the data. This is defined through the map with root_mappings method in

CeramicCollection.

new_collection = CeramicCollection.new(ceramics: [ Ceramic.new(ceramic_id: "vase1", ceramic_details: CeramicDetails.new( name: "Imperial Vase", insignia: "Tang Tianbao") ), Ceramic.new(ceramic_id: "bowl2", ceramic_details: CeramicDetails.new( name: "18th Century Bowl", insignia: "Ming Wanli") ) ]) puts new_collection.to_yaml =>

---

vase1:

name: Imperial Vase

insignia: Tang Tianbao

bowl2:

name: 18th Century Bowl

insignia: Ming Wanli

====

[[attribute-extraction]] ==== Attribute extraction

NOTE: This feature is for key-value data model serialization only.

The child_mappings option is used to extract results from a key-value serialization data model (Hash, JSON, YAML, TOML) into a Lutaml::Model::Serializable object (collection or not).

The values are extracted from the key-value data model using the list of keys provided.

Syntax:

[source,ruby]

class SomeObject < Lutaml::Model::Serializable attribute :name_of_attribute, AttributeValueType, collection: true

hsh | json | yaml | toml | key_value do map 'key_value_model_attribute_name', to: :name_of_attribute, child_mappings: { value_type_attribute_name_1: <1> {path_to_value_1}, <2> value_type_attribute_name_2: {path_to_value_2}, # ... } end end

<1> The value_type_attribute_name_1 is the attribute name in the AttributeValueType model. The value of this attribute will be assigned the key of the hash in the key-value data model.

<2> The path_to_value_1 is an array of keys that represent the path to the value in the key-value serialization data model. The keys are used to extract the value from the key-value serialization data model and assign it to the attribute in the AttributeValueType model. + The path_to_value is in a nested array format with each value a symbol or a string, where each symbol represents a key to traverse down. The last key in the path is the value to be extracted.

.Determining the path to value in a key-value data model [example]

The following JSON contains 2 keys in schema named engine and gearbox.

[source,json]

{ "components": { "engine": { "manufacturer": "Ford", "model": "V8" }, "gearbox": { "manufacturer": "Toyota", "model": "4-speed" } } }

The path to value for the engine schema is [:components, :engine] and for the gearbox schema is [:components, :gearbox].

In path_to_value, the :key and :value are reserved instructions used to assign the key or value of the serialization data respectively as the value to the attribute.

[example]

In the following JSON content, the path_to_value for the object keys named engine and gearbox will utilize the :key keyword to assign the key of the object as the value of a designated attribute.

[source,json]

{ "components": { "engine": { /.../ }, "gearbox": { /.../ } } }

====

If a specified value path is not found, the corresponding attribute in the model will be assigned a nil value.

.Attribute values set to nil when the path_to_value is not found [example]

In the following JSON content, the path_to_value of [:extras, :sunroof] and [:extras, :drinks_cooler] at the object "gearbox" would be set to nil.

[source,json]

{ "components": { "engine": { "manufacturer": "Ford", "extras": { "sunroof": true, "drinks_cooler": true } }, "gearbox": { "manufacturer": "Toyota" } } }

====

.Using the child_mappings option to extract values from a key-value data model [example]

The following JSON contains 2 keys in schema named foo and bar.

[source,json]

<1> The keys foo and bar are to be mapped to the id attribute. <2> The nested path.link and path.name keys are used as the link and name attributes, respectively.

A model can be defined for this JSON as follows:

[source,ruby]

class Schema < Lutaml::Model::Serializable attribute :id, :string attribute :link, :string attribute :name, :string end

class ChildMappingClass < Lutaml::Model::Serializable attribute :schemas, Schema, collection: true

The output becomes:

[source,ruby]

ChildMappingClass.from_json(json) #<ChildMappingClass:0x0000000104ac7240 @schemas= [#<Schema:0x0000000104ac6e30 @id="foo", @link="link one", @name="one">, #<Schema:0x0000000104ac58f0 @id="bar", @link="link two", @name="two">]> ChildMappingClass.new(schemas: [Schema.new(id: "foo", link: "link one", name: "one"), Schema.new(id: "bar", link: "link two", name: "two")]).to_json #{"schemas"=>{"foo"=>{"path"=>{"link"=>"link one", "name"=>"one"}}, {"bar"=>{"path"=>{"link"=>"link two", "name"=>"two"}}}}}

In this example:

  • The key of each schema (foo and bar) is mapped to the id attribute.

  • The nested path.link and path.name keys are mapped to the link and name attributes, respectively. ====

=== Collection data models

==== General

Collection data models represent a group of models, mapping to an instance of Lutaml::Model::Collection.

Collection data models supported are identified by their short name:

jsonl:: JSONL (JSON Lines) yamls:: YAML Stream (multi-document format)

==== Mapping

As with collections in general, the map method is used to define collection mappings.

Syntax:

[source,ruby]

class MySerializedCollection < Lutaml::Model::Collection instances {attribute}, ModelType

{collection_type_short} do map_instances to: {attribute} end end

Where,

{collection_type_short}:: The short name of the collection type (e.g. jsonl, yamls).

{attribute}:: The name of the attribute in the collection that will hold the collection data.

ModelType:: The type of the model that will be used in the collection.

A singular model may also utilize collection data models in the following manner.

Syntax:

[source,ruby]

class MySerializedCollection < Lutaml::Model::Serializeable attribute {attribute}, ModelType, collection: true

{collection_type_short} do # Notice that there is no key_name i.e map <key_name>, to: <attribute_name>, # This is because in a collection there are no keys. Each object needs to be # mapped to the attribute. map to: {attribute} end end

Where,

{collection_type_short}:: The short name of the collection type (e.g. jsonl, yamls).

{attribute}:: The name of the attribute in the collection that will hold the collection data.

ModelType:: The type of the model that will be used in the collection.

==== JSONL

JSONL (short for JSON Lines) is a serialization format where each line represents a valid JSON object. The format is meant to be efficient for large datasets such as for streaming or batch processing.

It represents a collection of JSON objects encoded one object per line.

NOTE: The contents of JSONL itself is not valid JSON, but each line is a valid JSON.

Since JSONL contains JSON elements, the model specified with instances or attribute must support JSON.

Every line in a JSONL file is also a valid JSON object. If JSONL-specific mappings (through jsonl) are not defined in the model, the existing json mappings are used instead as a fallback for serialization and deserialization.

.Parsing a JSONL collection using a collection [example]

[source,ruby]

class Person attribute :name, :string attribute :age, :integer attribute :id, :string end

class Directory < Lutaml::Model::Collection instances :persons, Person

jsonl do map_instances to: :persons end end

jsonl = <<~JSONL {"name":"John","age":30,"id":"abc-123"} {"name":"Jane","age":25,"id":"def-456"} JSONL

jsonl = Directory.from_jsonl(jsonl)

=> <Directory:0x00007fae4b0c9b10

@persons=[

<Person:0x00007fae4b0c9970 @name="John", @age=30, @id="abc-123">,

<Person:0x00007fae4b0c9838 @name="Jane", @age=25, @id="def-456">

]>

====

.Parsing a JSONL collection using a singlular model [example]

[source,ruby]

class Person attribute :name, :string attribute :age, :integer attribute :id, :string end

class Directory < Lutaml::Model::Serializeable attribute :persons, Person, collection: true

jsonl do map_instances to: :persons end end

jsonl = <<~JSONL {"name":"John","age":30,"id":"abc-123"} {"name":"Jane","age":25,"id":"def-456"} JSONL

jsonl = Directory.from_jsonl(jsonl)

=> <Directory:0x00007fae4b0c9b10

@persons=[

<Person:0x00007fae4b0c9970 @name="John", @age=30, @id="abc-123">,

<Person:0x00007fae4b0c9838 @name="Jane", @age=25, @id="def-456">

]>

====

.Parsing a JSONL collection relying on JSON mappings on instance model [example]

[source,ruby]

class Person attribute :name, :string attribute :age, :integer attribute :id, :string

json do map "full_name", to: :name map "age", to: :age map "id", to: :id end end

class Directory < Lutaml::Model::Collection instances :persons, Person

jsonl do map_instances to: :persons end end

jsonl = <<~JSONL {"full_name":"John Doe","age":30,"id":"abc-123"} {"full_name":"Jane Smith","age":25,"id":"def-456"} JSONL

jsonl = Directory.from_jsonl(jsonl)

=> <Directory:0x00007fae4b0c9b10

@persons=[

<Person:0x00007fae4b0c9970 @name="John Doe", @age=30, @id="abc-123">,

<Person:0x00007fae4b0c9838 @name="Jane Smith", @age=25, @id="def-456">

]>

====

==== YAML Stream

YAML Stream (short for YAML multi-document format) is a serialization format where each document is separated by a document separator (---). The format is meant to be efficient for large datasets such as for streaming or batch processing.

It represents a collection of YAML documents encoded one document per stream.

NOTE: The contents of YAML Stream is valid YAML, where each document is a valid YAML document separated by document separators.

Since YAML Stream contains YAML elements, the model specified with instances or attribute must support YAML.

Every document in a YAML Stream file is also a valid YAML document. If YAML Stream-specific mappings (through yamls) are not defined in the model, the existing yaml mappings are used instead as a fallback for serialization and deserialization.

.Parsing a YAML Stream collection using a collection [example]

[source,ruby]

class Person attribute :name, :string attribute :age, :integer attribute :id, :string end

class Directory < Lutaml::Model::Collection instances :persons, Person

yamls do map_instances to: :persons end end

yamls = <<~YAMLS

name: John age: 30 id: abc-123

name: Jane age: 25 id: def-456 YAMLS

yamls = Directory.from_yamls(yamls)

=> <Directory:0x00007fae4b0c9b10

@persons=[

<Person:0x00007fae4b0c9970 @name="John", @age=30, @id="abc-123">,

<Person:0x00007fae4b0c9838 @name="Jane", @age=25, @id="def-456">

]>

====

.Parsing a YAML Stream collection using a singlular model [example]

[source,ruby]

class Person attribute :name, :string attribute :age, :integer attribute :id, :string end

class Directory < Lutaml::Model::Serializeable attribute :persons, Person, collection: true

yamls do map_instances to: :persons end end

yamls = <<~YAMLS

name: John age: 30 id: abc-123

name: Jane age: 25 id: def-456 YAMLS

yamls = Directory.from_yamls(yamls)

=> <Directory:0x00007fae4b0c9b10

@persons=[

<Person:0x00007fae4b0c9970 @name="John", @age=30, @id="abc-123">,

<Person:0x00007fae4b0c9838 @name="Jane", @age=25, @id="def-456">

]>

====

.Parsing a YAML Stream collection relying on YAML mappings on instance model [example]

[source,ruby]

class Person attribute :name, :string attribute :age, :integer attribute :id, :string

yaml do map "full_name", to: :name map "age", to: :age map "id", to: :id end end

class Directory < Lutaml::Model::Collection instances :persons, Person

yamls do map_instances to: :persons end end

yamls = <<~YAMLS

full_name: John Doe age: 30 id: abc-123

full_name: Jane Smith age: 25 id: def-456 YAMLS

yamls = Directory.from_yamls(yamls)

=> <Directory:0x00007fae4b0c9b10

@persons=[

<Person:0x00007fae4b0c9970 @name="John Doe", @age=30, @id="abc-123">,

<Person:0x00007fae4b0c9838 @name="Jane Smith", @age=25, @id="def-456">

]>

====

=== Format-independent mechanisms

[[mapping-value-transform]] ==== Mapping value transformation

A mapping value transformation is used when the value of an attribute needs to be transformed around the serialization process. Collection attributes are also supported.

This is useful when the representation of the value in a serialization format differs from its internal representation in the model.

NOTE: Value transformation can be applied at the <<attribute-value-transform,attribute-level>> or at the serialization-mapping level. They can also be applied together.

Syntax:

[source,ruby]

class SomeObject < Lutaml::Model::Serializable

Attribute-level transformation

attribute :attribute_name, {attr_type}, transform: { <1> export: ->(value) { ... }, import: ->(value) { ... } }

Mapping-level transformation in JSON format

{key_value_formats} do map "key", to: :attribute_name, transform: { <2> export: ->(value) { ... }, import: ->(value) { ... } } end

Mapping-level transformation in XML format

xml do map_element "ElementName", to: :attribute_name, transform: { <3> export: ->(value) { ... }, import: ->(value) { ... } }

map_attribute "AttributeName", to: :attribute_name, transform: {
  export: ->(value) { ... },
  import: ->(value) { ... }
}

end end

<1> At the attribute level, the transform option applied to the attribute method is used to define the transformation for the attribute.

<2> At the mapping level (for {key_value_formats} formats), the transform option applied to the map method is used to define the transformation for the mapping.

<3> At the mapping level (for the XML format), the transform option applied to the map_* methods is used to define the transformation for the mapping.

Where,

attribute_name:: The name of the attribute.

attr_type:: The type of the attribute.

Attribute-level transform:: The option to define a transformation for the attribute value.

Attribute-level export:: The transformation Proc for the value when it is being retrieved from the model.

Attribute-level import:: The transformation Proc for the value when it is being assigned to the model.

{key_value_formats}:: The serialization format (e.g. hsh, json, yaml, toml, key_value) for which the mapping is defined.

Mapping-level transform:: The option to define a transformation for the serialization mapping value. The value given to the Proc is the model attribute value that does not go through attribute-level transform.

Mapping-level export:: The transformation Proc for the attribute value when it is being written to the serialization format.

Mapping-level import:: The transformation Proc for the value when it is being read from the serialization format and assigned to the model.

[example]

[source,ruby]

class Ceramic < Lutaml::Model::Serializable attribute :glaze_type, :string

Mapping-level transformation in key-value formats

json do map "glazeType", to: :glaze_type, transform: { export: ->(value) { "Traditional #{value}" }, import: ->(value) { value.gsub("Traditional ", "") } } end

Mapping-level transformation in XML format

xml do root "Ceramic" map_attribute "glaze-type", to: :glaze_type, transform: { export: ->(value) { "Traditional #{value}" }, import: ->(value) { value.gsub("Traditional ", "") } } end end

[source,ruby]

ceramic = Ceramic.new(glaze_type: "celadon")

Export transformation applied on defined mapping

ceramic.to_json

=> {"glazeType": "Traditional celadon"}

Export transformation applied on defined mapping

ceramic.to_xml

=>

No export transformation when no mapping exists

ceramic.to_yaml

=> glaze_type: "celadon"

Import transformation applied on defined mapping

ceramic = Ceramic.from_json('{ "glazeType" => "Traditional celadon" }') ceramic.glaze_type

=> "celadon"

Import transformation applied on defined mapping

ceramic = Ceramic.from_xml('') ceramic.glaze_type

=> "raku"

No import transformation when no mapping exists

ceramic = Ceramic.from_yaml('glaze_type: "Traditional celadon"') ceramic.glaze_type

=> "Traditional celadon"

====

Attribute-level and mapping-level transformations can be used together for the same attribute in a chained fashion.

Precedence applies to the two levels of transformation for deserialization:

. Mapping-level transformation, if defined, occurs first

. Attribute-level transformation, if defined, is applied to the result of the mapping-level transformation

Conversely, precedence applies in the same order for serialization:

. Attribute-level transformation, if defined, occurs first

. Mapping-level transformation, if defined, is applied to the result of the attribute-level transformation

This mechanism allows for flexible value transformations without needing format-specific custom methods.

.Diagram indicating flow of transformation across layers [source]

╔════════════════════════════╗ ╔════════════════════════════╗ ║ Serialization Format Value ║ ║ Serialization Format Value ║ ╚════════════════════════════╝ ╚════════════════════════════╝ | ▲ ▼ | ╔════════════════════════════╗ ╔════════════════════════════╗ ║ Mapping Transform ║ ║ Mapping Transform ║ ╚════════════════════════════╝ ╚════════════════════════════╝ | ▲ ▼ | ╔════════════════════════════╗ ╔════════════════════════════╗ ║ Attribute Transform ║ ║ Attribute Transform ║ ╚════════════════════════════╝ ╚════════════════════════════╝ | ▲ ▼ | ╔════════════════════════════╗ ╔════════════════════════════╗ ║ Model Attribute Value ║ ║ Model Attribute Value ║ ╚════════════════════════════╝ ╚════════════════════════════╝

[example]

[source,ruby]

class Ceramic < Lutaml::Model::Serializable

Attribute-level transformation

attribute :glaze_type, :string, transform: { export: ->(value) { "Ceramic #{value}" }, import: ->(value) { value.gsub("Ceramic ", "") } }

Mapping-level transformation in key-value formats

json do map "glazeType", to: :glaze_type, transform: { export: ->(value) { "Traditional #{value}" }, import: ->(value) { value.gsub("Traditional ", "") } } end

Mapping-level transformation in XML format

xml do root "Ceramic" map_attribute "glaze-type", to: :glaze_type, transform: { export: ->(value) { "Traditional #{value}" }, import: ->(value) { value.gsub("Traditional ", "") } } end end

[source,ruby]

ceramic = Ceramic.new(glaze_type: "Ceramic celadon")

Attribute-level export transformation applied

ceramic.glaze_type

=> "Ceramic celadon"

Internal representation

ceramic.instance_value_get(:@glaze_type)

=> "celadon"

Mapping-level export transformation applied to attribute-level transformed value

ceramic.to_json

=> {"glazeType": "Traditional Ceramic celadon"}

Mapping-level export transformation applied to attribute-level transformed value

ceramic.to_xml

=>

No mapping-level export transformation when no mapping exists

ceramic.to_yaml

=> glaze_type: "Ceramic celadon"

Attribute-level import transformation applied to mapping-level transformed value

ceramic = Ceramic.from_json('{ "glazeType" => "Traditional Ceramic celadon" }') ceramic.glaze_type

=> "Ceramic celadon"

Attribute-level import transformation applied to mapping-level transformed value

ceramic = Ceramic.from_xml('') ceramic.glaze_type

=> "Ceramic raku"

No mapping-level import transformation when no mapping exists

ceramic = Ceramic.from_yaml('glaze_type: "Ceramic celadon"') ceramic.glaze_type

=> "Ceramic celadon"

====

[[separate-serialization-model]] ==== Separate data model class

The Serialize module can be used to define only serialization mappings for a separately defined data model class (a Ruby class).

NOTE: This is traditionally called "custom model".

Syntax:

[source,ruby]

class MappingClass < Lutaml::Model::Serializable model {DataModelClass}

...

end

Where,

MappingClass:: The class that represents the serialization mappings. This class must be a subclass of Lutaml::Model::Serializable.

DataModelClass:: The class that represents the data model.

When using a separate data model class, it is important to remember that the serialization methods (instance#to_*, klass.from_*, such as instance.to_yaml, instance.to_xml or Klass.from_yaml, Klass.from_xml), are to be called on the mapping class, not the data model instance.

[example] .Using the model method to define serialization mappings for a separate model

[source,ruby]

class Ceramic attr_accessor :type, :glaze

def name "#{type} with #{glaze}" end end

class CeramicSerialization < Lutaml::Model::Serializable model Ceramic

xml do map_element 'type', to: :type map_element 'glaze', to: :glaze end end

[source,ruby]

Ceramic.new(type: "Porcelain", glaze: "Clear").name

"Porcelain with Clear"

CeramicSerialization.from_xml(xml) #<Ceramic:0x0000000104ac7240 @type="Porcelain", @glaze="Clear"> Ceramic.new(type: "Porcelain", glaze: "Clear").to_xml #PorcelainClear

====

[example] .Using the model method to define serialization mappings for a separate model in a model hierarchy

The following class will parse the XML snippet below:

[source,ruby]

class CustomModelChild attr_accessor :street, :city end

class CustomModelChildMapper < Lutaml::Model::Serializable model CustomModelChild

attribute :street, Lutaml::Model::Type::String attribute :city, Lutaml::Model::Type::String

xml do map_element :street, to: :street map_element :city, to: :city end end

class CustomModelParentMapper < Lutaml::Model::Serializable attribute :first_name, Lutaml::Model::Type::String attribute :child_mapper, CustomModelChildMapper

xml do map_element :first_name, to: :first_name map_element :CustomModelChild, with: { to: :child_to_xml, from: :child_from_xml } end

def child_to_xml(model, parent, doc) child_el = doc.create_element("CustomModelChild") street_el = doc.create_element("street") city_el = doc.create_element("city")

doc.add_text(street_el, model.child_mapper.street)
doc.add_text(city_el, model.child_mapper.city)

doc.add_element(child_el, street_el)
doc.add_element(child_el, city_el)
doc.add_element(parent, child_el)

end

def child_from_xml(model, value) model.child_mapper ||= CustomModelChild.new

model.child_mapper.street = value["elements"]["street"].text
model.child_mapper.city = value["elements"]["city"].text

end end

[source,xml]

John Oxford Street London ----

[source,ruby]

instance = CustomModelParentMapper.from_xml(xml) #<CustomModelParent:0x0000000107c9ca68 @child_mapper=#<CustomModelChild:0x0000000107c95218 @city="London", @street="Oxford Street">, @first_name="John"> CustomModelParentMapper.to_xml(instance) #<first_name>John</first_name>Oxford StreetLondon

====

==== Rendering default values (forced rendering of default values)

By default, attributes with default values are not rendered if the current value is the same as the default value.

In certain cases, it is necessary to render the default value even if the current value is the same as the default value. This is achieved by setting the render_default option to true.

Syntax:

[source,ruby]

attribute :name_of_attribute, Type, default: -> { value }

xml do map_element 'name_of_attribute', to: :name_of_attribute, render_default: true map_attribute 'name_of_attribute', to: :name_of_attribute, render_default: true end

hsh | json | yaml | toml | key_value do map 'name_of_attribute', to: :name_of_attribute, render_default: true end

.Using the render_default option to force encoding the default value [example]

[source,ruby]

class Glaze < Lutaml::Model::Serializable attribute :color, :string, default: -> { 'Clear' } attribute :opacity, :string, default: -> { 'Opaque' } attribute :temperature, :integer, default: -> { 1050 } attribute :firing_time, :integer, default: -> { 60 }

xml do root "glaze" map_element 'color', to: :color map_element 'opacity', to: :opacity, render_default: true map_attribute 'temperature', to: :temperature map_attribute 'firingTime', to: :firing_time, render_default: true end

json do map 'color', to: :color map 'opacity', to: :opacity, render_default: true map 'temperature', to: :temperature map 'firingTime', to: :firing_time, render_default: true end end

====

.Attributes with render_default: true are rendered when the value is identical to the default [example]

[source,ruby]

glaze_new = Glaze.new puts glaze_new.to_xml

Opaque

puts glaze_new.to_json

{"firingTime":60,"opacity":"Opaque"}

====

.Attributes with render_default: true with non-default values are rendered [example]

[source,ruby]

glaze = Glaze.new(color: 'Celadon', opacity: 'Semitransparent', temperature: 1300, firing_time: 90) puts glaze.to_xml

Semitransparent

puts glaze.to_json

{"color":"Celadon","temperature":1300,"firingTime":90,"opacity":"Semitransparent"}

====

=== Advanced attribute mapping

==== Mapping multiple names to a single attribute

The mapping methods support multiple names mapping to a single attribute using an array of names.

Syntax:

[source,ruby]

hsh | json | yaml | toml | key_value do map ["name1", "name2"], to: :attribute_name end

xml do map_element ["name1", "name2"], to: :attribute_name map_attribute ["attr1", "attr2"], to: :attribute_name end

When serializing, the first element in the array of mapped names is always used as the output name.

.Using multiple names to map to a single attribute [example]

[source,ruby]

class CustomModel < Lutaml::Model::Serializable attribute :full_name, Lutaml::Model::Type::String attribute :color, Lutaml::Model::Type::String attribute :id, Lutaml::Model::Type::String

json do map ["name", "custom_name"], with: { to: :name_to_json, from: :name_from_json } map ["color", "shade"], with: { to: :color_to_json, from: :color_from_json } end

xml do root "CustomModel" map_element ["name", "custom-name"], with: { to: :name_to_xml, from: :name_from_xml } map_element ["color", "shade"], with: { to: :color_to_xml, from: :color_from_xml } map_attribute ["id", "identifier"], to: :id end

Custom methods for JSON

def name_to_json(model, doc) doc["name"] = "JSON Model: #{model.full_name}" end

def name_from_json(model, value) model.full_name = value&.sub(/^JSON Model: /, "") end

def color_to_json(model, doc) doc["color"] = model.color.upcase end

def color_from_json(model, value) model.color = value&.downcase end

Custom methods for XML

def name_to_xml(model, parent, doc) el = doc.create_element("name") doc.add_text(el, "XML Model: #{model.full_name}") doc.add_element(parent, el) end

def name_from_xml(model, value) model.full_name = value.sub(/^XML Model: /, "") end

def color_to_xml(model, parent, doc) el = doc.create_element("color") doc.add_text(el, model.color.upcase) doc.add_element(parent, el) end

def color_from_xml(model, value) model.color = value.downcase end end

For JSON: [source,json]

{ "custom_name": "JSON Model: Vase", "shade": "BLUE", "identifier": "123" }

For XML: [source,xml]

XML Model: Vase BLUE ----

[source,ruby]

model = CustomModel.from_json(json) model.full_name

"Vase"

model.color

"blue"

====

==== Attribute mapping delegation

Delegate attribute mappings to nested objects using the delegate option.

Syntax:

[source,ruby]

xml | hsh | json | yaml | toml do map 'key_value_model_attribute_name', to: :name_of_attribute, delegate: :model_to_delegate_to end

.Using the delegate option to map attributes to nested objects [example]

The following class will parse the JSON snippet below:

[source,ruby]

class Glaze < Lutaml::Model::Serializable attribute :color, :string attribute :temperature, :integer

json do map 'color', to: :color map 'temperature', to: :temperature end end

class Ceramic < Lutaml::Model::Serializable attribute :type, :string attribute :glaze, Glaze

json do map 'type', to: :type map 'color', to: :color, delegate: :glaze end end

[source,json]

{ "type": "Porcelain", "color": "Clear" }

[source,ruby]

Ceramic.from_json(json) #<Ceramic:0x0000000104ac7240 @type="Porcelain", @glaze=#<Glaze:0x0000000104ac7240 @color="Clear", @temperature=nil>> Ceramic.new(type: "Porcelain", glaze: Glaze.new(color: "Clear")).to_json #{"type"=>"Porcelain", "color"=>"Clear"}

====

NOTE: The corresponding keyword used by Shale is receiver: instead of delegate:.

==== Attribute serialization with custom methods

===== General

Define custom methods for specific attribute mappings using the with: key for each serialization mapping block for from and to.

===== XML serialization with custom methods

Syntax:

.XML serialization with custom methods [source,ruby]

xml do map_element 'element_name', to: :name_of_element, with: { to: :method_name_to_serialize, from: :method_name_to_deserialize } map_attribute 'attribute_name', to: :name_of_attribute, with: { to: :method_name_to_serialize, from: :method_name_to_deserialize } map_content, to: :name_of_content, with: { to: :method_name_to_serialize, from: :method_name_to_deserialize } end

.Using the with: key to define custom serialization methods for XML [example]

The following class will parse the XML snippet below:

[source,ruby]

class Metadata < Lutaml::Model::Serializable attribute :category, :string attribute :identifier, :string end

class CustomCeramic < Lutaml::Model::Serializable attribute :name, :string attribute :size, :integer attribute :description, :string attribute :metadata, Metadata

xml do map_element "Name", to: :name, with: { to: :name_to_xml, from: :name_from_xml } map_attribute "Size", to: :size, with: { to: :size_to_xml, from: :size_from_xml } map_content with: { to: :description_to_xml, from: :description_from_xml } map_element :metadata, to: :metadata, with: { to: :metadata_to_xml, from: :metadata_from_xml } end

def name_to_xml(model, parent, doc) el = doc.create_element("Name") doc.add_text(el, "XML Masterpiece: #{model.name}") doc.add_element(parent, el) end

def name_from_xml(model, value) model.name = value.sub(/^XML Masterpiece: /, "") end

def size_to_xml(model, parent, doc) doc.add_attribute(parent, "Size", model.size + 3) end

def size_from_xml(model, value) model.size = value.to_i - 3 end

def description_to_xml(model, parent, doc) doc.add_text(parent, "XML Description: #{model.description}") end

def description_from_xml(model, value) model.description = value.join.strip.sub(/^XML Description: /, "") end

def metadata_to_xml(model, parent, doc) metadata_el = doc.create_element("metadata") category_el = doc.create_element("category") identifier_el = doc.create_element("identifier")

doc.add_text(category_el, model.metadata.category)
doc.add_text(identifier_el, model.metadata.identifier)

doc.add_element(metadata_el, category_el)
doc.add_element(metadata_el, identifier_el)
doc.add_element(parent, metadata_el)

end

def metadata_from_xml(model, value) model.metadata ||= Metadata.new

model.metadata.category = value["elements"]["category"].text
model.metadata.identifier = value["elements"]["identifier"].text

end end

[source,xml]

XML Masterpiece: Vase XML Description: A beautiful ceramic vase Metadata 123 ----

[source,ruby]

CustomCeramic.from_xml(xml) #<CustomCeramic:0x0000000108d0e1f8 @element_order=["text", "Name", "text", "Size", "text"], @name="Masterpiece: Vase", @ordered=nil, @size=12, @description="A beautiful ceramic vase", @metadata=#<Metadata:0x0000000105ad52e0 @category="Metadata", @identifier="123">> puts CustomCeramic.new(name: "Vase", size: 12, description: "A beautiful vase", metadata: Metadata.new(category: "Glaze", identifier: 15)).to_xml

XML Masterpiece: Vase

Glaze

15

XML Description: A beautiful vase

[source,ruby]

def custom_method_from_xml(model, value) instance = value.node # Lutaml::Model::XmlAdapter::AdapterElement

OR

instance = value.node.adapter_node # Adapter::Element

xml = instance.to_xml end

When building a model from XML in custom methods, if the value parameter is a mapping_hash, then it allows access to the parsed XML structure through value.node which can be converted to an XML string using to_xml.

NOTE: For NokogiriAdapter, we can also call to_xml on value.node.adapter_node.

[source,ruby]

value

{"text"=>["\n ", "\n ", "\n "], "elements"=>{"category"=>{"text"=>"Metadata"}}}

value.to_xml

undefined_method to_xml

value.node

Nokogiri Adapter Node

#<Lutaml::Model::XmlAdapter::NokogiriElement:0x0000000107656ed8

@attributes={},

@children=

[#<Lutaml::Model::XmlAdapter::NokogiriElement:0x0000000107656cd0 @attributes={}, @children=[], @default_namespace=nil, @name="text", @namespace_prefix=nil, @text="\n ">,

#<Lutaml::Model::XmlAdapter::NokogiriElement:0x00000001076569b0

@attributes={},

@children=

[#<Lutaml::Model::XmlAdapter::NokogiriElement:0x00000001076567f8 @attributes={}, @children=[], @default_namespace=nil, @name="text", @namespace_prefix=nil, @text="Metadata">],

@default_namespace=nil,

@name="category",

@namespace_prefix=nil,

@text="Metadata">,

#<Lutaml::Model::XmlAdapter::NokogiriElement:0x0000000107656028 @attributes={}, @children=[], @default_namespace=nil, @name="text", @namespace_prefix=nil, @text="\n ">],

@default_namespace=nil,

@name="metadata",

@namespace_prefix=nil,

@text="\n Metadata\n ">

Ox Adapter Node

#<Lutaml::Model::XmlAdapter::OxElement:0x0000000107584f78

@attributes={},

@children=

[#<Lutaml::Model::XmlAdapter::OxElement:0x0000000107584e60

@attributes={},

@children=[#<Lutaml::Model::XmlAdapter::OxElement:0x0000000107584d48 @attributes={}, @children=[], @default_namespace=nil, @name="text", @namespace_prefix=nil, @text="Metadata">],

@default_namespace=nil,

@name="category",

@namespace_prefix=nil,

@text="Metadata">],

@default_namespace=nil,

@name="metadata",

@namespace_prefix=nil,

@text=nil>

Oga Adapter Node

<Lutaml::Model::XmlAdapter::Oga::Element:0x0000000107314158

@attributes={},

@children=

[#<Lutaml::Model::XmlAdapter::Oga::Element:0x0000000107314090 @attributes={}, @children=[], @default_namespace=nil, @name="text", @namespace_prefix=nil, @text="\n ">,

#<Lutaml::Model::XmlAdapter::Oga::Element:0x000000010730fe78

@attributes={},

@children=[#<Lutaml::Model::XmlAdapter::Oga::Element:0x000000010730fd88 @attributes={}, @children=[], @default_namespace=nil, @name="text", @namespace_prefix=nil, @text="Metadata">],

@default_namespace=nil,

@name="category",

@namespace_prefix=nil,

@text="Metadata">,

#<Lutaml::Model::XmlAdapter::Oga::Element:0x000000010730f8d8 @attributes={}, @children=[], @default_namespace=nil, @name="text", @namespace_prefix=nil, @text="\n ">],

@default_namespace=nil,

@name="metadata",

@namespace_prefix=nil,

@text="\n Metadata\n ">

value.node.to_xml #Metadata

====

===== Key-value data model serialization with custom methods

.Key-value data model serialization with custom methods [source,ruby]

hsh | json | yaml | toml do map 'attribute_name', to: :name_of_attribute, with: { to: :method_name_to_serialize, from: :method_name_to_deserialize } end

.Using the with: key to define custom serialization methods [example]

The following class will parse the JSON snippet below:

[source,ruby]

class CustomCeramic < Lutaml::Model::Serializable attribute :name, :string attribute :size, :integer

json do map 'name', to: :name, with: { to: :name_to_json, from: :name_from_json } map 'size', to: :size end

def name_to_json(model, doc) doc["name"] = "Masterpiece: #{model.name}" end

def name_from_json(model, value) model.name = value.sub(/^Masterpiece: /, '') end end

[source,json]

{ "name": "Masterpiece: Vase", "size": 12 }

[source,ruby]

CustomCeramic.from_json(json) #<CustomCeramic:0x0000000104ac7240 @name="Vase", @size=12> CustomCeramic.new(name: "Vase", size: 12).to_json #{"name"=>"Masterpiece: Vase", "size"=>12}

====

=== Handling the missing values family

==== General

Different information models define different primitive value types, and the same goes for the notions of the "missing values" family:

the empty value:: the value is present but empty the non-existent value:: the value is not present the undefined value:: the value is not defined

There are also different ways to represent these missing values when the attribute accepts a single value or a collection of values.

.Support of missing value types in different technologies |=== | Technology | Missing value type | Realized as

.3+| Lutaml::Model | empty value | Ruby empty string ("") | non-existent value | Ruby NilClass (nil) | undefined value | class Uninitialized

.3+| XML element | empty value | XML blank element: <status></status> or <status/> | non-existent value | XML blank element with attribute xsi:nil: <status xsi:nil="true"/> | undefined value | the XML element is omitted

.3+| XML attribute | empty value | XML blank attribute: status="" | non-existent value | the XML attribute is omitted | undefined value | the XML attribute is omitted

.3+| JSON | empty value | JSON empty string ("") | non-existent value | JSON null value | undefined value | the JSON key is omitted

.3+| TOML | empty value | TOML empty string | non-existent value | the TOML key is omitted since TOML does not support the concept of null. | undefined value | the TOML key is omitted

|===

NOTE: The Uninitialized class is a special Lutaml::Model construct, it is not supported by normal Ruby objects.

The challenge for the developer is how to represent fully compatible semantics using interoperable data models across different technologies.

Lutaml::Model provides you with several mechanisms to retain the missing values semantics. An example mapping is shown in the following diagram.

.Mapping of missing value types between Lutaml::Model and YAML [source]

┌─────────────────────────────────────────────────────────────────────────────┐ │ ╔════════════════════════╗ ╔════════════════════════╗ │ │ ║ Lutaml::Model Values ║ ║ YAML Values ║ │ │ ╠════════════════════════╣ ╠════════════════════════╣ │ │ ║ ║ mapping ║ ║ │ │ ║ "empty" ║◀──────────────────▶║ "empty" ║ │ │ ║ (empty string, []) ║ to empty ║ (empty string, []) ║ │ │ ║ ║ ║ ║ │ │ ╟────────────────────────╢ ╟────────────────────────╢ │ │ ║ ║ mapping ║ ║ │ │ ║ "non-existent" ║◀──────────────────▶║ "non-existent" ║ │ │ ║ (nil) ║ to non-existent ║ (null) ║ │ │ ║ ║ ║ ║ │ │ ╟────────────────────────╢ ╟────────────────────────╢ │ │ ║ ║ mapping ║ ║ │ │ ║ "undefined" ║◀──────────────────▶║ "undefined" ║ │ │ ║ (uninitialized) ║ to undefined ║ (key omitted) ║ │ │ ║ ║ ║ ║ │ │ ╚════════════════════════╝ ╚════════════════════════╝ │ └─────────────────────────────────────────────────────────────────────────────┘

In the case where the interoperating technologies do not support the full spectrum of missing value types, it is necessary for the developer to understand any such behavior and relevant handling.

.Mapping of missing value types between Lutaml::Model and TOML [source]

┌─────────────────────────────────────────────────────────────────────────────┐ │ ╔════════════════════════╗ ╔════════════════════════╗ │ │ ║ Lutaml::Model Values ║ ║ TOML Values ║ │ │ ╠════════════════════════╣ ╠════════════════════════╣ │ │ ║ ║ mapping ║ ║ │ │ ║ "empty" ║◀──────────────────▶║ "empty" ║ │ │ ║ (empty string, []) ║ to empty ║ (empty string, []) ║ │ │ ║ ║ ║ ║ │ │ ╟────────────────────────╢ ╟────────────────────────╢ │ │ ║ ║ mapping ║ ║ │ │ ║ "non-existent" ║◀──────────────────▶║ ║ │ │ ║ (nil) ║ to undefined ║ "undefined" ║ │ │ ║ ║ ║ (key omitted) ║ │ │ ╟────────────────────────╢ ║ ║ │ │ ║ ║ mapping ║ ║ │ │ ║ "undefined" ║─────(one-way)─────▶║ TOML does not ║ │ │ ║ (uninitialized) ║ to undefined ║ support NULL ║ │ │ ║ ║ ║ ║ │ │ ╚════════════════════════╝ ╚════════════════════════╝ │ └─────────────────────────────────────────────────────────────────────────────┘

There are the following additional challenges that a developer must take into account of:

  • Single attribute value vs collection attribute value. Different technologies treat single/collection values differently.

  • External schemas and systems that interoperate with serializations from Lutaml::Model. Many schemas and systems adopt "different" conventions for representing missing value semantics (sometimes very awkward ones).

The solution for the first challenge is to understand the behavior of the different technologies used. The default mappings are described in <<value_representation_in_lutaml-model>> and <<value_representation_in_serialization_formats>>.

[[value_representation_in_lutaml-model]] ==== Value representation in Lutaml::Model

The following table summarizes the behavior of the Lutaml::Model in regards of the "missing values" family.

.Handling of missing value types in Lutaml::Model data types [cols="1,1,2,2"] |=== | LutaML value type | Cardinality (1 or n) | Missing value type | Ruby value

.3+| Collection attribute .3+| collection | empty value | [] (Array) | non-existent value | nil (NilClass) | undefined value | No assigned value

.3+| :string .3+| single | empty value | "" (String) | non-existent value | nil (NilClass) | undefined value | No assigned value

.3+| :integer .3+| single | empty value | N/A | non-existent value | nil (NilClass) | undefined value | No assigned value

.3+| :float .3+| single | empty value | N/A | non-existent value | nil (NilClass) | undefined value | No assigned value

.3+| :boolean .3+| single | empty value | N/A | non-existent value | nil (NilClass) | undefined value | No assigned value

.3+| :date .3+| single | empty value | N/A | non-existent value | nil (NilClass) | undefined value | No assigned value

.3+| :time_without_date .3+| single | empty value | N/A | non-existent value | nil (NilClass) | undefined value | No assigned value

.3+| :date_time .3+| single | empty value | N/A | non-existent value | nil (NilClass) | undefined value | No assigned value

.3+| :time .3+| single | empty value | N/A | non-existent value | nil (NilClass) | undefined value | No assigned value

.3+| :decimal .3+| single | empty value | N/A | non-existent value | nil (NilClass) | undefined value | No assigned value

.3+| :hash .3+| single | empty value | {} (Hash) | non-existent value | nil (NilClass) | undefined value | No assigned value

|===

[[value_representation_in_serialization_formats]] ==== Value representation in serialization formats

Every serialization format uses a different information model to represent these missing values.

Some serialization formats support all 3 types of missing values, while others only support a subset of them.

.Varied handling of missing values in supported serialization formats |=== | Serialization format | Cardinality (1 or n) | Missing value type | Example

.6+| XML .3+| collection | empty collection | the XML blank element: <status></status> or <status/> | non-existent collection | a blank element with attribute xsi:nil: <status xsi:nil="true"/> | undefined collection | the XML element is omitted .3+| single | empty value | the XML blank element: <status></status> or <status/> | non-existent value | a blank element with attribute xsi:nil: <status xsi:nil="true"/> | undefined value | the XML element is omitted

.6+| JSON .3+| collection | empty collection | an empty array ([]) | non-existent collection | the value null | undefined collection | the key is omitted .3+| single | empty value | an empty string ("") | non-existent value | the value null | undefined value | the key is omitted

.6+| YAML .3+| collection | empty collection | an empty array ([]) | non-existent collection | the value null | undefined collection | the key is omitted .3+| single | empty value | an empty string ("") | non-existent value | the value null | undefined value | the key is omitted

.6+| TOML .3+| collection | empty collection | an empty array ([]) | non-existent collection | TOML does not support the concept of "null" | undefined collection | the key is omitted .3+| single | empty value | an empty string ("") | non-existent value | TOML does not support the concept of "null" | undefined value | the key is omitted

|===

==== Missing value mapping

===== General

Lutaml::Model provides a comprehensive way to handle the missing values family across different serialization formats.

The value_map option as applied to serialization mapping rules allow users to meticulously define how each and every missing value should be mapped from a serialization format to a Lutaml::Model object.

The value_map option is used to define mappings for both from and to values:

from pairs:: A hash of key-value pairs that determines the mapping of a missing value at the serialization format ("from") to a LutaML Model missing value where this mapping applies. The key is the missing value type in the serialization format, and the value is the missing value type in the LutaML Model. + NOTE: In other words, used when converting the serialized format into a Lutaml::Model Ruby object.

to pairs:: A hash of key-value pairs that determines the mapping of a LutaML Model ("to") missing to a missing value choice at the serialization format where this mapping applies. The key is the missing value type in the LutaML Model, and the value is the missing value type in the serialization format. + NOTE: In other words, used when converting a Lutaml::Model Ruby object into the serialized format.

Syntax:

[source,ruby]

{map_command} 'format-key', to: :attribute_name, value_map: { <1> from: { {format-missing-value-n}: {model-missing-value-n}, <2> {format-missing-value-m}: {model-missing-value-m}, {format-missing-value-o}: {model-missing-value-o} }, to: { {model-missing-value-n}: {format-missing-value-n}, <3> {model-missing-value-m}: {format-missing-value-m}, {model-missing-value-o}: {format-missing-value-o} } }

<1> The {map_command} is a mapping rule with the actual command depending on the serialization format. <2> In the from mapping, the keys are the missing value types in the serialization format. <3> In the to mapping, the keys are the missing value types in the LutaML Model.

The missing value type mapping differs per serialization format, as serialization formats may not fully support all missing value types.

The availability of from and to keys and values depend on the types of missing values supported by that particular serialization format.

The available values for from and to for serialization formats are presented below, where the allowed values are to be used in the direction of the format. That means if the format supports :empty, it can be used as a key in from: direction, and the value in the to: direction (see {format-missing-value-n}) in the syntax.

.Available missing value types in different mapping commands [cols="a,2a"] |=== | Map command | Missing value types available (key in from: direction, value in the to: direction)

| XML element map_element | :empty, :omitted, :nil | XML attribute map_attribute | :empty, :omitted | Hash map, map_content | :empty, :omitted, :nil | JSON map, map_content | :empty, :omitted, :nil | YAML map, map_content | :empty, :omitted, :nil | TOML map, map_content | :empty, :omitted

|===

[example] For instance, TOML does not support the notion of "null" and therefore the missing value type of nil cannot be used; therefore in a from: value map, it is not possible to indicate nil: {model-missing-value}.

[example]

In an XML mapping block, it is possible to do the following.

[source,ruby]

xml do map_element 'status', to: :status, value_map: { from: { empty: :nil, omitted: :omitted, nil: :nil }, to: { empty: :nil, omitted: :omitted, nil: :nil } } end

====

Each serialization format has specific behavior when handling values such as empty, omitted, and nil.

Users can specify the mapping for both from and to values using the value_map option in the attribute definition.

  • The keys that can be used in the from and to mappings are empty, omitted, and nil.

  • The values in the mappings can also be empty, omitted, and nil.

NOTE: Since nil is not supported in TOML, so mappings like nil: {any_option} or {any_option}: :nil will not work in TOML.

NOTE: In a collection attribute, the values of value_map also depend on the initialize_empty setting, where an omitted value in the serialization format can still lead to a nil or an empty array [] at the attribute-level (instead of the mapping-level).

===== Default value maps for serialization formats

The table below describes the default value_map configurations for supported serialization formats.

// TODO: Find a place to write this // XML Handling:: // - <status>new</status> will be treated as ["new"]. // - <status>new</status><status>assigned</status> will be treated as ["new", "assigned"].

====== Default value map for XML element (single attribute)

[source,ruby]

attribute :attr, :string

xml do map_element 'key', to: :attr, value_map: { from: { empty: :nil, omitted: :omitted, nil: :nil }, to: { empty: :empty, omitted: :omitted, nil: :nil } } end

.Default missing value mapping configuration for single attributes in XML elements [cols="a,a,a,a"] |===

h| Direction h| Map rule h| XML source h| Model target

.3+|from: | empty: :nil | blank XML element (<status/>) | nil

| omitted: :omitted | absent XML element | omitted from the model

| nil: :nil | blank XML element with attribute xsi:nil (<status xsi:nil=true/>) | nil value in the model

h| Direction h| Map rule h| Model source h| XML target

.3+|to: | empty: :empty | empty string ("") | blank XML element

| omitted: :omitted | omitted in the model | XML element not rendered

| nil: :nil | nil value in the model | blank XML element with attribute xsi:nil (<status xsi:nil=true/>)

|===

====== Default value map for XML element (collection attribute)

[source,ruby]

attribute :attr, :string, collection: true

xml do map_element 'key', to: :attr, value_map: { from: { empty: :empty, omitted: :omitted, nil: :nil }, to: { empty: :empty, omitted: :omitted, nil: :nil } } end

.Default missing value mapping configuration for collection attributes in XML elements [cols="a,a,a,a"] |===

h| Direction h| Map rule h| XML source h| Model target

.3+|from: | empty: :nil | blank XML element (<status/>) | empty array ([])

| omitted: :omitted | absent XML element | omitted from the model

| nil: :nil | blank XML element with attribute xsi:nil (<status xsi:nil=true/>) | nil value in the model

h| Direction h| Map rule h| Model source h| XML target

.3+|to: | empty: :empty | empty array ([]) | blank XML element

| omitted: :omitted | omitted in the model | XML element not rendered

| nil: :nil | nil value in the model | blank XML element with attribute xsi:nil (<status xsi:nil=true/>)

|===

====== Default value map for XML attribute (single attribute)

[source,ruby]

attribute :attr, :string

xml do map_attribute 'attr_name', to: :attr, value_map: { from: { empty: :nil, omitted: :omitted }, to: { empty: :empty, nil: :empty, omitted: :omitted } } end

.Default missing value mapping configuration for single attributes in XML attributes [cols="a,a,a,a"] |===

h| Direction h| Map rule h| XML source h| Model target

.2+|from: (source only supports empty and omitted) | empty: :nil | blank XML attribute (status="") | nil

| omitted: :omitted | absent XML attribute | omitted from the model

h| Direction h| Map rule h| Model source h| XML target

.3+|to: (target only accepts empty and omitted) | empty: :empty | empty string ("") | blank XML attribute (status="")

| omitted: :omitted | omitted in the model | XML attribute not rendered

| nil: :empty | nil | blank XML attribute (status="")

|===

====== Default value map for XML attribute (collection attribute)

[source,ruby]

attribute :attr, :string, collection: true

xml do map_attribute 'attr_name', to: :attr, value_map: { from: { empty: :empty, omitted: :omitted }, to: { empty: :empty, nil: :omitted, omitted: :omitted } } end

.Default missing value mapping configuration for collection attributes in XML attributes [cols="a,a,a,a"] |===

h| Direction h| Map rule h| XML source h| Model target

.2+|from: (source only supports empty and omitted) | empty: :empty | blank XML attribute (status="") | empty array ([])

| omitted: :omitted | absent XML attribute | omitted from the model

h| Direction h| Map rule h| Model source h| XML target

.3+|to: (target only accepts empty and omitted) | empty: :empty | empty array ([]) | blank XML attribute (status="")

| omitted: :omitted | omitted in the model | XML attribute not rendered

| nil: :omitted | nil | XML attribute not rendered

|===

====== Default value map for YAML (single attribute)

[source,ruby]

attribute :attr, :string

yaml do map 'key', to: :attr, value_map: { from: { empty: :empty, omitted: :omitted, nil: :nil }, to: { empty: :empty, omitted: :omitted, nil: :nil } } end

.Default missing value mapping configuration for single attributes in YAML [cols="a,a,a,a"] |===

h| Direction h| Map rule h| XML source h| Model target

.3+|from: | empty: :empty | empty string in YAML (status: or status: "") | empty string ("")

| omitted: :omitted | absent YAML key | omitted from the model

| nil: :nil | YAML null | nil

h| Direction h| Map rule h| Model source h| XML target

.3+|to: | empty: :empty | empty string ("") | empty string in YAML (status:)

| omitted: :omitted | omitted in the model | YAML key omitted

| nil: :nil | nil | YAML null

|===

NOTE: In order to treat a YAML value like status: '' to nil, the mapping of value_map: { from: { empty: :nil } } can be applied.

====== Default value map for YAML (collection attribute)

[source,ruby]

attribute :attr, :string, collection: true

yaml do map 'key', to: :attr, value_map: { from: { empty: :empty, omitted: :omitted, nil: :nil }, to: { empty: :empty, omitted: :omitted, nil: :nil } } end

.Default missing value mapping configuration for collection attributes in YAML [cols="a,a,a,a"] |===

h| Direction h| Map rule h| YAML source h| Model target

.3+|from: | empty: :empty | empty YAML array (status: or status: []) | empty array ([])

| omitted: :omitted | absent YAML key | omitted from the model

| nil: :nil | YAML null | nil

h| Direction h| Map rule h| Model source h| YAML target

.3+|to: | empty: :empty | empty array ([]) | empty YAML array (status: [])

| omitted: :omitted | omitted in the model | YAML key omitted

| nil: :nil | nil | YAML null

|===

NOTE: If the YAML key for the collection attribute is omitted, it will be treated as nil or an empty array depending on the initialize_empty setting.

====== Default value map for JSON (single attribute)

[source,ruby]

attribute :attr, :string

json do map 'key', to: :attr, value_map: { from: { empty: :empty, omitted: :omitted, nil: :nil }, to: { empty: :empty, omitted: :omitted, nil: :nil } } end

.Default missing value mapping configuration for single attributes in JSON [cols="a,a,a,a"] |===

h| Direction h| Map rule h| JSON source h| Model target

.3+|from: | empty: :empty | empty string in JSON ("status" : "") | empty string ("")

| omitted: :omitted | absent JSON key | omitted from the model

| nil: :nil | JSON null | nil

h| Direction h| Map rule h| Model source h| JSON target

.3+|to: | empty: :empty | empty string ("") | empty string in JSON ("status" : "")

| omitted: :omitted | omitted in the model | JSON key omitted

| nil: :nil | nil | JSON null

|===

====== Default value map for JSON (collection attribute)

[source,ruby]

attribute :attr, :string, collection: true

json do map 'key', to: :attr, value_map: { from: { empty: :empty, omitted: :omitted, nil: :nil }, to: { empty: :empty, omitted: :omitted, nil: :nil } } end

.Default missing value mapping configuration for collection attributes in JSON [cols="a,a,a,a"] |===

h| Direction h| Map rule h| JSON source h| Model target

.3+|from: | empty: :empty | empty JSON array ("status": []) | empty array ([])

| omitted: :omitted | absent JSON key | omitted from the model

| nil: :nil | JSON null | nil

h| Direction h| Map rule h| Model source h| JSON target

.3+|to: | empty: :empty | empty array ([]) | empty JSON array ("status": [])

| omitted: :omitted | omitted in the model | JSON key omitted

| nil: :nil | nil | JSON null

|===

====== Default value map for TOML (single attribute)

TOML does not support the concept of nil and therefore the mapping of from: direction with nil to will not work in TOML.

The nil mapping is only supported in the to: direction (model to TOML).

[source,ruby]

attribute :attr, :string

toml do map 'key', to: :attr, value_map: { from: { empty: :empty, omitted: :omitted }, to: { empty: :empty, omitted: :omitted, nil: :omitted } } end

.Default missing value mapping configuration for single attributes in TOML [cols="a,a,a,a"] |===

h| Direction h| Map rule h| TOML source h| Model target

.2+|from: (source only supports empty and omitted) | empty: :empty | empty string in TOML ([status] with no value) | empty string ("")

| omitted: :omitted | absent TOML key | omitted from the model

h| Direction h| Map rule h| Model source h| TOML target

.3+|to: (source only supports empty and omitted) | empty: :empty | empty string ("") | empty string in TOML ([status] with no value)

| omitted: :omitted | omitted in the model | TOML key omitted

| nil: :omitted | nil | TOML key omitted

|===

====== Default value map for TOML (collection attribute)

TOML does not support the concept of nil and therefore the mapping of from: direction with nil to will not work in TOML.

The nil mapping is only supported in the to: direction (model to TOML).

[source,ruby]

attribute :attr, :string, collection: true

toml do map 'key', to: :attr, value_map: { from: { empty: :empty, omitted: :omitted }, to: { empty: :empty, omitted: :omitted, nil: :omitted } } end

.Default missing value mapping configuration for collection attributes in TOML [cols="a,a,a,a"] |===

h| Direction h| Map rule h| TOML source h| Model target

.2+|from: (source only supports empty and omitted) | empty: :empty | empty TOML array ([status] with no value) | empty array ([])

| omitted: :omitted | absent TOML key | omitted from the model

h| Direction h| Map rule h| Model source h| TOML target

.3+|to: (source only supports empty and omitted) | empty: :empty | empty array ([]) | empty TOML array ([status] with no value)

| omitted: :omitted | omitted in the model | TOML key omitted

| nil: :omitted | nil | TOML key omitted

|===

===== Replacing missing values type mapping with value_map

The value_map option can be defined to meticulously map for each serialization format as follows.

[example]

.Using value_map with from and to values [source,ruby]

class ExampleClass < Lutaml::Model::Serializable attribute :status, :string

xml do map_element 'status', to: :status, value_map: { from: { empty: :nil, omitted: :omitted, nil: :nil }, to: { empty: :nil, omitted: :omitted, nil: :nil } } end

hsh | json | yaml | toml | key_value do map 'status', to: :status, value_map: { from: { empty: :nil, omitted: :omitted, nil: :nil }, to: { empty: :nil, omitted: :omitted, nil: :nil } } end end

yaml = <<~YAML

status: '' YAML

ExampleClass.from_yaml(yaml)

=> #<ExampleClass:0x000000011954efb0 @status=nil>

yaml1 = <<~YAML

YAML

ExampleClass.from_yaml(yaml1)

=> #<ExampleClass:0x000000011954efb0 @status=uninitialized>

yaml2 = <<~YAML

status: YAML

ExampleClass.from_yaml(yaml2)

=> #<ExampleClass:0x000000011954efb0 @status=nil>

====

When defining an attribute with collection: true, the attribute will behave as follows:

[source,ruby]

attribute :status, :string, collection: true

Here's an example of how you can use the value_map with a collection attribute.

.Using value_map with a collection attribute [example]

[source,ruby]

class ExampleClass < Lutaml::Model::Serializable attribute :status, :string, collection: true

xml do map_element 'status', to: :status, value_map: { from: { empty: :nil, omitted: :omitted, nil: :nil }, to: { empty: :nil, omitted: :omitted, nil: :nil } } end

hsh | json | yaml | key_value do map 'status', to: :status, value_map: { from: { empty: :nil, omitted: :omitted, nil: :nil }, to: { empty: :nil, omitted: :omitted, nil: :nil } } end

toml do map 'status', to: :status, value_map: { from: { empty: :nil, omitted: :omitted }, to: { empty: :nil, omitted: :omitted, nil: :omitted } } end end

yaml = <<~YAML

status: ['new', 'assigned'] YAML

y = ExampleClass.from_yaml(yaml)

=> #<ExampleClass:0x000000011954efb0 @status=["new", "assigned"]>

====

// TODO: Need to improve this example.

==== Specific overrides of value map (render_* and treat_*)

===== General

There are times that one may want to simply override handling of selective missing value types rather than re-define the entire value map.

The :render_* and :treat_* options are simple switches that override the default value map provided for the different serialization formats.

Syntax:

[source,ruby]

{map_command} 'format-key', to: :attribute_name, <1> :render_{model-value}: :as_{format-value}, <2>

...

:treat_{format-value}: :as_{model-value}, <3>

...

<1> The {map_command} is a mapping rule with the actual command depending on the serialization format. The attribute of attribute_name may be a single or a collection value. <2> The :render_* mapping overrides the default value map for missing value types in model-to-serialization. <3> The :treat_* mapping overrides the default value map for missing value types in serialization-to-model.

Specifically,

  • The :render_{model-value}: :as_{format-value} options are used to override the default behavior of rendering missing value types into the serialization format. {model-value}::: specifies the missing value type in the LutaML Model. {format-value}::: specifies the missing value type in the serialization format.

  • The :treat_{format-value}: :as_{model-value} options are used to override the default behavior of importing missing value types into the model. {format-value}::: specifies the missing value type in the serialization format. {model-value}::: specifies the missing value type in the LutaML Model.

In effect, the default value_map is overriden by the :render_* and :treat_* directives.

[example]

Given the default mapping for an XML element, the :render_* and :treat_* options can be used to selectively override behavior.

[source,ruby]

xml do map_element 'key', to: :attr, value_map: { from: { empty: :nil, omitted: :omitted, nil: :nil }, to: { empty: :empty, omitted: :omitted, nil: :nil } } end

By changing to this:

[source,ruby]

xml do map_element 'key', to: :attr, render_nil: :as_empty, <1> treat_omitted: :as_nil <2> end

<1> This overrides the to: direction nil: :nil mapping. <2> This overrides the from: direction omitted: :omitted mapping

The resulting value map would be:

[source,ruby]

xml do map_element 'status', to: :status, value_map: { from: { empty: :nil, omitted: :omitted, nil: :empty }, <1> to: { empty: :nil, omitted: :nil, nil: :nil } <2> } end

<1> See that nil: :nil is now nil: :empty. <2> See that omitted: :omitted is now omitted: :nil

==== render_nil

===== General

:render_nil is a specially handled case of the :render_* pattern due to legacy. It is used to override default value map behavior for the nil model value.

render_nil accepts these values:

:as_empty/:as_blank::: if the value is nil, render it as an empty string.

:nil::: if the value is nil, render it as an element with attribute xsi:nil.

:omit::: if the value is nil, omit the element or attribute.

true::: (legacy) setting render_nil: true will render the attribute as an empty element if the attribute is nil. This has the same effect as render_nil: :as_empty.

Syntax:

[source,ruby]

xml do map_element 'key_value_model_attribute_name', to: :name_of_attribute, render_nil: {option} end

[source,ruby]

hsh | json | yaml | toml do map 'key_value_model_attribute_name', to: :name_of_attribute, render_nil: {option} end

===== Render nil as true

.Using the render_nil: true option to render an attribute value of nil as an empty element [example]

[source,ruby]

class Ceramic < Lutaml::Model::Serializable attribute :type, :string attribute :glaze, :string

xml do map_element 'type', to: :type, render_nil: true map_element 'glaze', to: :glaze end

json do map 'type', to: :type, render_nil: true map 'glaze', to: :glaze end end

[source,ruby]

Ceramic.new.to_json

{ 'type': null }

Ceramic.new(type: "Porcelain", glaze: "Clear").to_json

{ 'type': 'Porcelain', 'glaze': 'Clear' }

[source,ruby]

Ceramic.new.to_xml

Ceramic.new(type: "Porcelain", glaze: "Clear").to_xml

PorcelainClear

====

.Using the render_nil: true option to render an empty attribute collection of nil as an empty element [example]

[source,ruby]

class Ceramic < Lutaml::Model::Serializable attribute :type, :string attribute :glazes, :string, collection: true

xml do map_element 'type', to: :type, render_nil: true map_element 'glazes', to: :glazes, render_nil: true end

json do map 'type', to: :type, render_nil: true map 'glazes', to: :glazes, render_nil: true end end

[source,ruby]

Ceramic.new.to_json

{ 'type': null, 'glazes': [] }

Ceramic.new(type: "Porcelain", glazes: ["Clear"]).to_json

{ 'type': 'Porcelain', 'glazes': ['Clear'] }

[source,ruby]

Ceramic.new.to_xml

Ceramic.new(type: "Porcelain", glazes: ["Clear"]).to_xml

PorcelainClear

====

===== Render nil as omit

Using render_nil: :omit with a nil value will omit the key from XML and key-value formats.

[example]

[source,ruby]

class SomeModel < Lutaml::Model::Serializable attribute :coll, :string, collection: true

xml do root "some-model" map_element 'collection', to: :coll, render_nil: :omit end

key_value do map 'collection', to: :coll, render_nil: :omit end end

puts SomeModel.new.coll

=> nil

puts SomeModel.new.to_xml

=>

puts SomeModel.new.to_yaml

=>

---

====

===== Render nil as nil

Using render_nil: :as_nil with a nil value will create an empty element with xsi:nil attribute in XML and create a key with explicit null value in key-value formats.

NOTE: TOML does not support this option.

[example]

[source,ruby]

class SomeModel < Lutaml::Model::Serializable attribute :coll, :string, collection: true

xml do root "some-model" map_element 'collection', to: :coll, render_nil: :as_nil end

hsh | json | yaml do map 'collection', to: :coll, render_nil: :as_nil end end

puts SomeModel.new.coll

=> nil

puts SomeModel.new.to_xml

=>

puts SomeModel.new.to_yaml

=>

---

coll: null

====

===== Render nil as blank

Using render_nil: :as_blank | :as_empty will create a blank element in XML and create a key with an explicit empty array in key-value formats.

[example]

[source,ruby]

class SomeModel < Lutaml::Model::Serializable attribute :coll, :string, collection: true

xml do root "some-model" map_element 'collection', to: :coll, render_nil: :as_blank end

key_value do map 'collection', to: :coll, render_nil: :as_empty end end

puts SomeModel.new.coll

=> nil

puts SomeModel.new.to_xml

=>

puts SomeModel.new.to_yaml

=>

---

coll: []

====

==== render_empty

===== General

:render_empty is a specially handled case of the :render_* pattern due to legacy. It is used to override default value map behavior for the nil model value.

render_empty accepts these values:

:as_empty/:as_blank::: if the value is nil, render it as an empty string.

:nil::: if the value is nil, render it as an element with attribute xsi:nil.

:omit::: if the value is nil, omit the element or attribute.

Syntax:

[source,ruby]

xml do map_element 'key_value_model_attribute_name', to: :name_of_attribute, render_empty: {option} end

[source,ruby]

hsh | json | yaml | toml do map 'key_value_model_attribute_name', to: :name_of_attribute, render_empty: {option} end

===== Render empty as omit

Using render_empty: :omit with an empty value or empty collection will omit the key from XML and key-value formats.

[example]

[source,ruby]

class SomeModel < Lutaml::Model::Serializable attribute :coll, :string, collection: true

xml do root "some-model" map_element 'collection', to: :coll, render_empty: :omit end

key_value do map 'collection', to: :coll, render_empty: :omit end end

puts SomeModel.new(coll: []).coll

=> []

puts SomeModel.new.to_xml

=>

puts SomeModel.new.to_yaml

=>

---

====

===== Render empty as nil

Using render_empty: :as_nil will create an empty element with the xsi:nil attribute in XML, and create a key with explicit null value in key-value formats.

NOTE: TOML does not support this option.

[example]

[source,ruby]

class SomeModel < Lutaml::Model::Serializable attribute :coll, :string, collection: true

xml do root "some-model" map_element 'collection', to: :coll, render_empty: :as_nil end

hsh | json | yaml do map 'collection', to: :coll, render_empty: :as_nil end end

puts SomeModel.new(coll: []).coll

=> []

puts SomeModel.new.to_xml

=>

puts SomeModel.new.to_yaml

=>

---

coll: null

====

===== Render empty as blank/empty

Using render_empty: :as_blank or render_empty: :as_empty will create a blank element in XML and create a key with an explicit empty array in key-value formats.

[example]

[source,ruby]

class SomeModel < Lutaml::Model::Serializable attribute :coll, :string, collection: true

xml do root "some-model" map_element 'collection', to: :coll, render_empty: :as_blank end

key_value do map 'collection', to: :coll, render_empty: :as_empty end end

puts SomeModel.new(coll: []).coll

=> []

puts SomeModel.new.to_xml

=>

puts SomeModel.new.to_yaml

=>

---

coll: []

====

== Schema generation and import

=== Schema generation

Lutaml::Model provides functionality to generate schema definitions from LutaML models. This allows you to create schemas that can be used for validation or documentation purposes.

Currently, the following schema formats are supported:

==== JSON Schema generation

The Lutaml::Model::Schema.to_json method generates a JSON Schema from a LutaML model class. The generated schema includes:

  • Properties based on model attributes
  • Validation constraints (patterns, enumerations, etc.)
  • Support for polymorphic types
  • Support for inheritance
  • Support for choice attributes
  • Collection constraints

Example:

[source,ruby]

class Glaze < Lutaml::Model::Serializable attribute :color, :string attribute :finish, :string end

class Vase < Lutaml::Model::Serializable attribute :height, :float attribute :diameter, :float attribute :glaze, Glaze attribute :materials, :string, collection: true end

Generate JSON schema

schema = Lutaml::Model::Schema.to_json( Vase, id: "https://example.com/vase.schema.json", description: "A vase schema", pretty: true )

Write to file

File.write("vase.schema.json", schema)

The generated schema will include definitions for all nested models and their attributes.

==== YAML Schema generation

The Lutaml::Model::Schema.to_yaml method generates a YAML Schema from a LutaML model class. The generated schema includes the same features as the JSON Schema generation.

Example:

[source,ruby]

class Glaze < Lutaml::Model::Serializable attribute :color, :string attribute :finish, :string end

class Vase < Lutaml::Model::Serializable attribute :height, :float attribute :diameter, :float attribute :glaze, Glaze attribute :materials, :string, collection: true end

Generate YAML schema

schema = Lutaml::Model::Schema.to_yaml( Vase, id: "http://example.com/schemas/vase", description: "A vase schema", pretty: true )

Write to file

File.write("vase.schema.yaml", schema)

=== Importing data models

Lutaml::Model provides a way to import data models defined from various formats into the LutaML data modeling system.

Data model languages supported are:

The following figure illustrates the process of importing an XML Schema model to create LutaML core models. Once the LutaML core models are created, they can be used to parse and generate XML documents according to the imported XML Schema model.

Today, the LutaML core models are written into Ruby files, which can be used to parse and generate XML documents according to the imported XML Schema. This is to be changed so that the LutaML core models are directly loaded and interpreted.

.Importing an XML Schema model to create LutaML core models [source]

╔════════════════════════════╗ ╔═══════════════════════╗ ║ Serialization Models ║ ║ Core Model ║ ╚════════════════════════════╝ ╚═══════════════════════╝

╭┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄╮ ╭┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄╮ ┆ XML Schema (XSD/RNG/RNC) ┆ ┆ Model ┆ ┆ │ ┆ ┌────────────────┐ ┆ │ ┆ ┆ ┌──────┴──────┐ ┆ │ │ ┆ ┌────────┴──┐ ┆ ┆ │ │ ┆ │ Model │ ┆ │ │ ┆ ┆ Models Value Types ┆──►│ Importing │──►┆ Models Value Types ┆ ┆ │ │ ┆ │ │ ┆ │ │ ┆ ┆ │ │ ┆ └────────────────┘ ┆ │ │ ┆ ┆ ┌────┴────┐ ┌─┴─┐ ┆ │ ┆ │ ┌──────┴──┐ ┆ ┆ │ │ │ │ ┆ │ ┆ │ │ │ ┆ ┆ Element Value xs:string ┆ │ ┆ │ String Integer ┆ ┆ Attribute Type xs:date ┆ │ ┆ │ Date Float ┆ ┆ Union Complex xs:boolean ┆ │ ┆ │ Time Boolean ┆ ┆ Sequence Choice xs:anyURI ┆ │ ┆ │ ┆ ╰┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄╯ │ ┆ └──────┐ ┆ │ ┆ │ ┆ │ ┆ Contains ┆ │ ┆ more Models ┆ │ ┆ (recursive) ┆ │ ┆ ┆ │ ╰┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄╯ │ ┌────────────────┐ │ │ │ │ │ Model │ └──────────► │ Transformation │ │ & │ │ Mapping Rules │ │ │ └────────────────┘

[[xml-schema-to-model-files]] === XML Schema (XSD)

W3C XSD is a schema language designed to define the structure of XML documents, alongside other XML schema languages like DTD, RELAX NG, and Schematron.

Lutaml::Model supports the import of XSD schema files to define information models that can be used to parse and generate XML documents.

Specifically, the Lutaml::Model::Schema#from_xml method loads XML Schema files (XSD, *.xsd) and generates Ruby files (*.rb) that inherit from Lutaml::Model::Serializable that are saved to disk.

Syntax:

[source,ruby]

Lutaml::Model::Schema.from_xml( xsd_schema, <1> options: options <2> )

<1> The xsd_schema is the XML Schema string to be converted to model files. <2> The options hash is an optional argument.

options:: Optional hash containing potentially the following key-values.

output_dir::: The directory where the model files will be saved. If not provided, a default directory named lutaml_models_<timestamp> is created. + [example] "path/to/directory"

create_files::: A boolean argument (false by default) to create files directly in the specified directory as defined by the output_dir option. + [example] create_files: (true | false)

load_classes::: A boolean argument (false by default) to load generated classes before returning them. + [example] load_classes: (true | false)

namespace::: The namespace of the schema. This will be added in the Lutaml::Model::Serializable file's xml do block. + [example] http://example.com/namespace

prefix::: The prefix of the namespace provided in the namespace option. + [example] example-prefix

location::: The URL or path of the directory containing all the files of the schema. For more information, refer to the link:https://www.w3.org/TR/xmlschema-1/#include[XML Schema specification]. + [example] "http://example.com/example.xsd" + [example] "path/to/schema/directory"

NOTE: If both create_files and load_classes are provided, the create_files argument will take priority and generate files without loading them!

The generated LutaML models consists of two different kind of Ruby classes depending on the XSD schema:

XSD "SimpleTypes":: converted into classes that inherit from Lutaml::Model::Type::Value, which define the data types with restrictions and other validations of these values.

XSD "ComplexTypes":: converted into classes that inherit from Lutaml::Model::Serializable that model according to the defined structure.

Lutaml::Model uses the https://github.com/lutaml/lutaml-xsd[`lutaml-xsd` gem] to automatically resolve the include and import elements, enabling Lutaml-Model to generate the corresponding model files.

This auto-resolving feature allows seamless integration of these files into your models without the need for manual resolution of includes and imports.

[example] .Using Lutaml::Model::Schema#from_xml to convert an XML Schema to model files

[source,ruby]

xsd_schema = <<~XSD <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"> /* your schema here */ </xs:schema> XSD options = {

These are all optional:

output_dir: 'path/to/directory', namespace: 'http://example.com/namespace', prefix: "example-prefix", location: "http://example.com/example.xsd",

or

location: "path/to/schema/directory"

create_files: true, # Default: false

OR

load_classes: true, # Default: false }

generates the files in the output_dir | default_dir

Lutaml::Model::Schema.from_xml(xsd_schema, options: options)

====

You could also directly load the generated Ruby files into your application by requiring them.

[example] .Using the generated Ruby files in your application

[source,ruby]

Lutaml::Model::Schema.from_xml(xsd_schema, options: {output_dir: 'path/to/directory'}) require_relative 'path/to/directory/*.rb'

====

== Validation

=== General

Lutaml::Model provides a way to validate data models using the validate and validate! methods.

  • The validate method sets an errors array in the model instance that contains all the validation errors. This method is used for checking the validity of the model silently.

  • The validate! method raises a Lutaml::Model::ValidationError that contains all the validation errors. This method is used for forceful validation of the model through raising an error.

Lutaml::Model supports the following validation methods:

  • collection:: Validates collection size range.
  • values:: Validates the value of an attribute from a set of fixed values.
  • choice :: Validates that attribute specified within defined range

[example]

The following class will validate the degree_settings attribute to ensure that it has at least one element and that the description attribute is one of the values in the set [one, two, three].

[source,ruby]

class Klin < Lutaml::Model::Serializable attribute :name, :string attribute :degree_settings, :integer, collection: (1..) attribute :description, :string, values: %w[one two three] attribute :id, :integer attribute :age, :integer

choice(min: 1, max: 1) do choice(min: 1, max: 2) do attribute :prefix, :string attribute :forename, :string end

attribute :nick_name, :string

end

xml do map_element 'name', to: :name map_attribute 'degree_settings', to: :degree_settings end end

klin = Klin.new(name: "Klin", degree_settings: [100, 200, 300], description: "one", prefix: "Ben") klin.validate

=> []

klin = Klin.new(name: "Klin", degree_settings: [], description: "four", prefix: "Ben", nick_name: "Smith") klin.validate

=> [

#<Lutaml::Model::CollectionSizeError: degree_settings must have at least 1 element>,

#<Lutaml::Model::ValueError: description must be one of [one, two, three]>,

#<Lutaml::Model::ChoiceUpperBoundError: Attribute count exceeds the upper bound>

]

e = klin.validate!

=> Lutaml::Model::ValidationError: [

degree_settings must have at least 1 element,

description must be one of [one, two, three],

Attribute count exceeds the upper bound

]

e.errors

=> [

#<Lutaml::Model::CollectionSizeError: degree_settings must have at least 1 element>,

#<Lutaml::Model::ValueError: description must be one of [one, two, three]>,

#<Lutaml::Model::ChoiceUpperBoundError: Attribute count exceeds the upper bound>

#<Lutaml::Model::ChoiceLowerBoundError: Attribute count is less than lower bound>

]

====

=== Custom validation

To add custom validation, override the validate method in the model class. Additional errors should be added to the errors array.

[example]

The following class validates the degree_settings attribute when the type is glass to ensure that the value is less than 1300.

[source,ruby]

class Klin < Lutaml::Model::Serializable attribute :name, :string attribute :type, :string, values: %w[glass ceramic] attribute :degree_settings, :integer, collection: (1..)

def validate errors = super if type == "glass" && degree_settings.any? { |d| d > 1300 } errors << Lutaml::Model::Error.new("Degree settings for glass must be less than 1300") end end end

klin = Klin.new(name: "Klin", type: "glass", degree_settings: [100, 200, 1400]) klin.validate

=> [#<Lutaml::Model::Error: Degree settings for glass must be less than 1300>]

====

== Liquid template access

WARNING: The Liquid template feature is optional. To enable it, please explicitly require the liquid gem.

The https://shopify.github.io/liquid/[Liquid template language] is an open-source template language developed by Shopify and written in Ruby.

Lutaml::Model::Serializable objects can be safely accessed within Liquid templates through a to_liquid method that converts the objects into Liquid::Drop instances.

  • All attributes are accessible in the Liquid template by their names.
  • Nested attributes are also converted into Liquid::Drop objects so inner attributes can be accessed using the Liquid dot notation.

NOTE: Every Lutaml::Model::Serializable class extends the Liquefiable module which generates a corresponding Liquid::Drop class.

NOTE: Methods defined in the Lutaml::Model::Serializable class are not accessible in the Liquid template.

.Using to_liquid to convert model instances into corresponding Liquid drop instances

[example]

[source,ruby]

class Ceramic < Lutaml::Model::Serializable attribute :name, :string attribute :temperature, :integer end

ceramic = Ceramic.new({ name: "Porcelain Vase", temperature: 1200 }) ceramic_drop = ceramic.to_liquid

Ceramic::CeramicDrop

puts ceramic_drop.name

"Porcelain Vase"

puts ceramic_drop.temperature

1200

====

.Accessing LutaML::Model objects within a Liquid template [example]

[source,ruby]

class Ceramic < Lutaml::Model::Serializable attribute :name, :string attribute :temperature, :integer end

class CeramicCollection < Lutaml::Model::Serializable attribute :ceramics, Ceramic, collection: true end

sample.yml:

[source,yaml]

ceramics:

  • name: Porcelain Vase temperature: 1200
  • name: Earthenware Pot temperature: 950
  • name: Stoneware Jug temperature: 1200

template.liquid:

[source,liquid]

{% for ceramic in ceramic_collection.ceramics %}

  • Name: "{{ ceramic.name }}" ** Temperature: {{ ceramic.temperature }} {%- endfor %}

[source,ruby]

Load the Lutaml::Model collection

ceramic_collection = CeramicCollection.from_yaml(File.read("sample.yml"))

Load the Liquid template

template = Liquid::Template.parse(File.read("template.liquid"))

Pass the Lutaml::Model collection to the Liquid template and render

output = template.render("ceramic_collection" => ceramic_collection) puts output

>

* Name: "Porcelain Vase"

** Temperature: 1200

* Name: "Earthenware Pot"

** Temperature: 950

* Name: "Stoneware Jug"

** Temperature: 1200

====

.Accessing nested LutaML::Model objects within nested Liquid templates [example]

[source,ruby]

class Glaze < Lutaml::Model::Serializable attribute :color, :string attribute :opacity, :string end

class CeramicWork < Lutaml::Model::Serializable attribute :name, :string attribute :glaze, Glaze end

class CeramicCollection < Lutaml::Model::Serializable attribute :ceramics, Ceramic, collection: true end

ceramic_work = CeramicWork.new({ name: "Celadon Bowl", glaze: Glaze.new({ color: "Jade Green", opacity: "Translucent" }) }) ceramic_work_drop = ceramic_work.to_liquid

CeramicWork::CeramicWorkDrop

puts ceramic_work_drop.name

"Celadon Bowl"

puts ceramic_work_drop.glaze.color

"Jade Green"

puts ceramic_work_drop.glaze.opacity

"Translucent"

ceramics.yml:

[source,yaml]

ceramics:

  • name: Celadon Bowl glaze: color: Jade Green opacity: Translucent
  • name: Earthenware Pot glaze: color: Rust Red opacity: Opaque
  • name: Stoneware Jug glaze: color: Cobalt Blue opacity: Transparent

templates/_ceramics.liquid:

[source,liquid]

{% for ceramic in ceramic_collection.ceramics %} {% render 'ceramic' ceramic: ceramic %} {%- endfor %}

NOTE: render is a Liquid tag that renders a partial template, by default Liquid uses the pattern _%s.liquid to find the partial template. Here ceramic refers to the file at templates/_ceramic.liquid.

templates/_ceramic.liquid:

[source,liquid]

  • Name: "{{ ceramic.name }}" ** Temperature: {{ ceramic.temperature }} {%- if ceramic.glaze %} ** Glaze (color): {{ ceramic.glaze.color }} ** Glaze (opacity): {{ ceramic.glaze.opacity }} {%- endif %}

[source,ruby]

require 'liquid'

Create a Liquid template object that supports dynamic loading

template = Liquid::Template.new

file_system = Liquid::LocalFileSystem.new('templates/') template.registers[:file_system] = file_system

Load the partial template, this is necessary.

This will also allow Liquid to load any inner partials from the file system

dynamically (see file_system.pattern to see what it loads)

template.parse(file_system.read_template_file('ceramics'))

Read the lutaml-model collection

ceramic_collection = CeramicCollection.from_yaml(File.read("ceramics.yml"))

Render the template with the collection

output = template.render("ceramic_collection" => ceramic_collection) puts output

>

* Name: "Celadon Bowl"

** Temperature: 1200

** Glaze (color): Jade Green

** Glaze (finish): Translucent

* Name: "Earthenware Pot"

** Temperature: 950

** Glaze (color): Rust Red

** Glaze (finish): Opaque

* Name: "Stoneware Jug"

** Temperature: 1200

** Glaze (color): Cobalt Blue

** Glaze (finish): Transparent

====

== Serialization adapters

=== General

The LutaML component that serializes a model into a serialization format is called an adapter. A serialization format may be supported by multiple adapters.

An adapter typically:

  • supports a specific serialization format
  • provides a set of methods to serialize and deserialize models and collections of models

LutaML, out of the box, supports the following serialization formats:

The adapter interface is also used to support certain transformation of models into an "end format", which is not a serialization format. For example, the Lutaml::Model::HashAdapter is used to convert a model into a hash format that is not a serialization format.

Users can extend LutaML by creating custom adapters for other serialization formats or for other data formats. The link:docs/custom_adapters.adoc[Custom Adapters Guide] describes this process in detail.

For certain serialization formats, LutaML provides multiple adapters to support different serialization libraries. Please refer to their specific sections for more information.

=== Configuration

==== General

It is necessary to configure the adapter to be used for serialization and deserialization for a set of formats that the LutaML models will be transformed into.

There are two cases where you need to define such configuration:

  • End-user usage of the LutaML models. This is the case where you are using LutaML models in your application and want to serialize them into a specific format. If you are a gem developer that relies on lutaml-model, this case does not apply to you, because the end-user of your gem should determine the adapter configuration.

  • Testing purposes, e.g. RSpec. In order to run tests that involve verifying correctness of serialization, it is necessary to define adapter configuration.

There are two ways to specify a configuration:

  • by providing a predefined symbol (preferred)
  • by providing the actual adapter classes

There is a default configuration for adapters for commonly used formats:

  • YAML: yaml_adapter_type is set to :standard_yaml
  • JSON: json_adapter_type is set to :standard_json
  • Hash: hash_adapter_type is set to :standard_hash
  • XML: not defined
  • TOML: not defined

==== Configure adapters through symbol choices

The end-user or a gem developer can copy and paste the following configuration into an early loading file in their application or gem.

This configuration is preferred over the class choices because it is more concise and does not require any require code specific to the internals of the LutaML runtime implementation.

Syntax:

[source,ruby]

require 'lutaml/model'

Lutaml::Model::Config.configure do |config| config.xml_adapter_type = :nokogiri # can be one of [:nokogiri, :ox, :oga] config.hash_adapter_type = :standard_hash config.yaml_adapter_type = :standard_yaml config.json_adapter_type = :standard_json # can be one of [:standard_json, :multi_json] config.toml_adapter_type = :toml_rb # can be one of [:toml_rb, :tomlib] end

==== Configure adapters through class choices

The end-uesr or a gem developer can copy and paste the following configuration into an early loading file in their application or gem.

Only the serialization formats used will require a configuration.

Syntax:

[example]

[source,ruby]

require 'lutaml/model' require 'lutaml/model/xml/nokogiri_adapter' require 'lutaml/model/hash_adapter/standard_adapter' require 'lutaml/model/json/standard_adapter' require 'lutaml/model/yaml/standard_adapter' require 'lutaml/model/toml/toml_rb_adapter'

Lutaml::Model::Config.configure do |config| config.xml_adapter = Lutaml::Model::Xml::NokogiriAdapter config.hash_adapter = Lutaml::Model::HashAdapter::StandardAdapter config.yaml_adapter = Lutaml::Model::Yaml::StandardAdapter config.json_adapter = Lutaml::Model::Json::StandardAdapter config.toml_adapter = Lutaml::Model::Toml::TomlRbAdapter end

====

=== XML

Lutaml::Model supports the following XML adapters:

Nokogiri:: (default) Popular libxml based XML parser for Ruby. Requires native extensions (i.e. compiled C code). Requires the nokogiri gem.

Oga:: (optional) Pure Ruby XML parser. Does not require native extensions and is suitable for https://opalrb.com[Opal] (Ruby on JavaScript). Requires the oga gem.

Ox:: (optional) Fast XML parser and object serializer for Ruby, implemented partially in C. Requires native extensions (i.e. compiled C code). Requires the ox gem.

.Using an XML adapter [source,ruby]

require 'lutaml/model'

Lutaml::Model::Config.configure do |config| config.xml_adapter = :nokogiri

or

config.xml_adapter = :oga

or

config.xml_adapter = :ox end

=== YAML

Lutaml::Model supports only one YAML adapter.

YAML:: (default) The Psych YAML parser and emitter for Ruby. Included in the Ruby standard library.

.Using a YAML adapter [source,ruby]

require 'lutaml/model'

Lutaml::Model::Config.configure do |config| config.yaml_adapter = :standard_yaml end

=== JSON

Lutaml::Model supports the following JSON adapters:

JSON:: (default) The standard JSON library for Ruby. Included in the Ruby standard library.

MultiJson:: (optional) A gem that provides a common interface to multiple JSON libraries. Requires the multi_json gem.

.Using a JSON adapter [source,ruby]

require 'lutaml/model'

Lutaml::Model::Config.configure do |config| config.json_adapter = :standard_json

or

config.json_adapter = :multi_json end

=== TOML

Lutaml::Model supports the following TOML adapters:

Toml-rb:: (default) A TOML parser and serializer for Ruby that is compatible with the TOML v1.0.0 specification. Requires the toml-rb gem.

Tomlib:: (optional) Toml-rb fork that is compatible with the TOML v1.0.0 specification, but with additional features. Requires the tomlib gem.

.Using a TOML adapter [source,ruby]

require 'lutaml/model'

Lutaml::Model::Config.configure do |config| config.toml_adapter = :toml_rb

or

config.toml_adapter = :tomlib end

[[custom-adapters]] == Custom serialization adapters

Lutaml::Model provides a flexible system for creating custom adapters to handle different data formats.

Please refer to link:docs/custom_adapters.adoc[Custom adapters] for details and examples.

[[schema-generation]] == Schema generation

Lutaml::Model provides functionality to generate schema definitions from LutaML models. This allows you to create schemas that can be used for validation or documentation purposes.

Currently, the following schema formats are supported:

The schema generation supports advanced features such as:

  • Validation constraints (patterns, enumerations, ranges)
  • Choice attributes with min/max constraints
  • Polymorphic types with oneOf validation
  • Collection constraints with minItems/maxItems

Please refer to link:docs/schema_generation.adoc[Schema Generation] for details and examples.

[[schema-import]] == Schema import

Lutaml::Model provides functionality to import schema definitions into LutaML models. This allows you to create models from existing schema definitions.

Currently, the following schema formats are supported:

Please refer to link:docs/schema_import.adoc[Schema Import] for details and examples.

[[custom-registers]] === Custom Registers

A LutaML::Model Register allows for dynamic modification and reconfiguration of model hierarchies without altering the original model definitions. For more information, refer to the link:docs/custom_registers.adoc[Custom Registers Guide].

NOTE: Before using the Lutaml::Model::Register instance, make sure to register it in Lutaml::Model::GlobalRegister.

NOTE: By default, a default_register with the id :default is created and registered in the GlobalRegister. This default register is also set in Lutaml::Model::Config.default_register as the default value.

The default register can be set at the configuration level using the following syntax:

  Lutaml::Model::Config.default_register = :default # the register id goes here.

== Comparison with Shale

Lutaml::Model is a serialization library that is similar to Shale, but with some differences in implementation.

[cols="a,a,a,a",options="header"] |=== | Feature | Lutaml::Model | Shale | Notes

| Data model definition | 3 types:

  • <<define-through-inheritance,Inherit from Lutaml::Model::Serializable>>

  • <<define-through-inclusion,Include Lutaml::Model::Serialize>>

  • <<separate-serialization-model,Separate serialization model class>> | 2 types:

  • Inherit from Shale::Mapper

  • Custom model class |

| Value types | Lutaml::Model::Type includes: Integer, String, Float, Boolean, Date, DateTime, Time, Decimal, Hash. | Shale::Type includes: Integer, String, Float, Boolean, Date, Time. | Lutaml::Model supports additional value types Decimal, DateTime and Hash.

| Configuration | Lutaml::Model::Config | Shale.{type}_adapter | Lutaml::Model uses a configuration block to set the serialization adapters.

| Custom serialization methods | :with, on individual attributes | :using, on entire object/document | Lutaml::Model uses the :with keyword for custom serialization methods.

| Serialization formats | XML, YAML, JSON, TOML | XML, YAML, JSON, TOML, CSV | Lutaml::Model does not support CSV.

| Validation | Supports collection range, fixed values, and custom validation | Requires implementation |

| Adapter support | XML (Nokogiri, Ox, Oga), YAML, JSON (JSON, MultiJson), TOML (Toml-rb, Tomlib) | XML (Nokogiri, Ox), YAML, JSON (JSON, MultiJson), TOML (Toml-rb, Tomlib), CSV | Lutaml::Model does not support CSV.

4+h| XML features

| <<root-namespace,XML default namespace>> | Yes. Supports <root xmlns='http://example.com'> through the namespace option without prefix. | No. Only supports <root xmlns:prefix='http://example.com'>. |

| XML mixed content support | Yes. Supports the following kind of XML through <<mixed-content,mixed content>> support.

[source,xml]

My name is John Doe, and I'm 28 years old

| No. Shale's map_content only supports the first text node. |

| XML namespace inheritance | Yes. Supports the <<namespace-inherit,inherit>> option to inherit the namespace from the root element. | No. |

| Support for xsi:schemaLocation | Yes. Automatically supports the <<xml-schema-location,xsi:schemaLocation>> attribute for every element. | Requires manual specification on every XML element that uses it. |

| Compiling XML Schema to Lutaml::Model::Serializable classes | Yes. Using <<xml-schema-to-model-files, Lutaml::Model::Schema#from_xml>>

  • ComplexTypes are compiled to Lutaml::Model::Serializable classes containing the attributes.
  • SimpleTypes are compiled to Lutaml::Model::Type::Value classes to support XML Schema level validations. | Yes, Provides only an array of the classes and doesn't support simple types with restrictions and/or other validations. |

4+h| Attribute features

| Attribute delegation | :delegate option to delegate attribute mappings to a model. | :receiver option to delegate attribute mappings to a model. |

| Enumerations | Yes. Supports enumerations as value types through the <<attribute-enumeration,values: option>>. | No. | Lutaml::Model supports enumerations as value types.

| Attribute extraction | Yes. Supports <<attribute-extraction,attribute extraction>> from key-value data models. | No. | Lutaml::Model supports attribute extraction from key-value data models.

| Register | Yes. Supports three types of registers(<<custom-register, read more details>>) with different types of functionalities. | Supports register functionality for Shale::Type classes only. | Lutaml::Model registers both Registrable classes and Lutaml::Model::Type classes, offering a more comprehensive registration system.

|===

[[migrate-from-shale]] == Migration steps from Shale

The following sections provide a guide for migrating from Shale to Lutaml::Model.

=== Step 1: Replace inheritance class

Lutaml::Model uses Lutaml::Model::Serializable as the base inheritance class.

[source,ruby]

class Example < Lutaml::Model::Serializable

...

end

[NOTE]

Lutaml::Model also supports an inclusion method as in the following example, which is not supported by Shale. This is useful for cases where you want to include the serialization methods in a class that already inherits from another class.

[source,ruby]

class Example include Lutaml::Model::Serialize

...

end

====

Shale uses Shale::Mapper as the base inheritance class.

[source,ruby]

class Example < Shale::Mapper

...

end

Actions:

  • Replace mentions of Shale::Mapper with Lutaml::Model::Serializable.
  • Potentially replace inheritance with inclusion for suitable cases.

=== Step 2: Replace value type definitions

Value types in Lutaml::Model are under the Lutaml::Model::Type module, or use the LutaML type symbols.

[source,ruby]

class Example < Lutaml::Model::Serializable attribute :length, :integer attribute :description, :string end

[NOTE]

Lutaml::Model supports specifying predefined value types as strings or symbols, which is not supported by Shale.

[source,ruby]

class Example < Lutaml::Model::Serializable attribute :length, Lutaml::Model::Type::Integer attribute :description, "String" end

====

Value types in Shale are under the Shale::Type module.

[source,ruby]

class Example < Shale::Mapper attribute :length, Shale::Type::Integer attribute :description, Shale::Type::String end

Action:

  • Replace mentions of Shale::Type with Lutaml::Model::Type.
  • Potentially replace value type definitions with strings or symbols.

=== Step 3: Configure serialization adapters

Lutaml::Model uses a configuration block to set the serialization adapters.

[source,ruby]

require 'lutaml/model/xml_adapter/nokogiri_adapter' Lutaml::Model::Config.configure do |config| config.xml_adapter = Lutaml::Model::XmlAdapter::NokogiriAdapter end

The equivalent for Shale is this:

[source,ruby]

require 'shale/adapter/nokogiri' Shale.xml_adapter = Shale::Adapter::Nokogiri

Here are places that this code may reside at:

  • If your code is a standalone Ruby script, this code will be present in your code.
  • If your code is organized in a Ruby gem, this code will be specified somewhere referenced by lib/your_gem_name.rb.
  • If your code contains tests or specs, they will be in the test setup file, e.g. RSpec spec/spec_helper.rb.

Actions:

  • Replace the Shale configuration block with the Lutaml::Model::Config configuration block.

  • Replace the Shale adapter with the Lutaml::Model adapter.

=== Step 4: Rewrite custom serialization methods

There is an implementation difference between Lutaml::Model and Shale for custom serialization methods.

Custom serialization methods in Lutaml::Model map to individual attributes.

For custom serialization methods, Lutaml::Model uses the :with keyword instead of the :using keyword used by Shale.

[source,ruby]

class Example < Lutaml::Model::Serializable attribute :name, :string attribute :size, :integer attribute :color, :string attribute :description, :string

json do map "name", to: :name, with: { to: :name_to_json, from: :name_from_json } map "size", to: :size map "color", to: :color, with: { to: :color_to_json, from: :color_from_json } map "description", to: :description, with: { to: :description_to_json, from: :description_from_json } end

xml do root "CustomSerialization" map_element "Name", to: :name, with: { to: :name_to_xml, from: :name_from_xml } map_attribute "Size", to: :size map_element "Color", to: :color, with: { to: :color_to_xml, from: :color_from_xml } map_content to: :description, with: { to: :description_to_xml, from: :description_from_xml } end

def name_to_json(model, doc) doc["name"] = "JSON Masterpiece: #{model.name}" end

def name_from_json(model, value) model.name = value.sub(/^JSON Masterpiece: /, "") end

def color_to_json(model, doc) doc["color"] = model.color.upcase end

def color_from_json(model, value) model.color = value.downcase end

def description_to_json(model, doc) doc["description"] = "JSON Description: #{model.description}" end

def description_from_json(model, value) model.description = value.sub(/^JSON Description: /, "") end

def name_to_xml(model, parent, doc) el = doc.create_element("Name") doc.add_text(el, "XML Masterpiece: #{model.name}") doc.add_element(parent, el) end

def name_from_xml(model, value) model.name = value.sub(/^XML Masterpiece: /, "") end

def color_to_xml(model, parent, doc) color_element = doc.create_element("Color") doc.add_text(color_element, model.color.upcase) doc.add_element(parent, color_element) end

def color_from_xml(model, value) model.color = value.downcase end

def description_to_xml(model, parent, doc) doc.add_text(parent, "XML Description: #{model.description}") end

def description_from_xml(model, value) model.description = value.join.strip.sub(/^XML Description: /, "") end end

Custom serialization methods in Shale do not map to specific attributes, but allow the user to specify where the data goes.

[source,ruby]

class Example < Shale::Mapper attribute :name, Shale::Type::String attribute :size, Shale::Type::Integer attribute :color, Shale::Type::String attribute :description, Shale::Type::String

json do map "name", using: { from: :name_from_json, to: :name_to_json } map "size", to: :size map "color", using: { from: :color_from_json, to: :color_to_json } map "description", to: :description, using: { from: :description_from_json, to: :description_to_json } end

xml do root "CustomSerialization" map_element "Name", using: { from: :name_from_xml, to: :name_to_xml } map_attribute "Size", to: :size map_element "Color", using: { from: :color_from_xml, to: :color_to_xml } map_content to: :description, using: { from: :description_from_xml, to: :description_to_xml } end

def name_to_json(model, doc) doc['name'] = "JSON Masterpiece: #{model.name}" end

def name_from_json(model, value) model.name = value.sub(/^JSON Masterpiece: /, "") end

def color_to_json(model, doc) doc['color'] = model.color.upcase end

def color_from_json(model, doc) model.color = doc['color'].downcase end

def description_to_json(model, doc) doc['description'] = "JSON Description: #{model.description}" end

def description_from_json(model, doc) model.description = doc['description'].sub(/^JSON Description: /, "") end

def name_from_xml(model, node) model.name = node.text.sub(/^XML Masterpiece: /, "") end

def name_to_xml(model, parent, doc) name_element = doc.create_element('Name') doc.add_text(name_element, model.street.to_s) doc.add_element(parent, name_element) end end

NOTE: There are cases where the Shale implementation of custom methods work differently from the Lutaml::Model implementation. In these cases, you will need to adjust the custom methods accordingly.

Actions:

  • Replace the using keyword with the with keyword.
  • Adjust the custom methods.

== About LutaML

The name "LutaML" is pronounced as "Looh-tah-mel".

The name "LutaML" comes from the Latin word for clay, "Lutum", and "ML" for "Markup Language". Just as clay can be molded and modeled into beautiful and practical end products, the Lutaml::Model gem is used for data modeling, allowing you to shape and structure your data into useful forms.

== License and Copyright

This project is licensed under the BSD 2-clause License. See the link:LICENSE.md[] file for details.

Copyright Ribose.

FAQs

Package last updated on 31 Jul 2025

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

About

Packages

Stay in touch

Get open source security insights delivered straight into your inbox.

  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc

U.S. Patent No. 12,346,443 & 12,314,394. Other pending.