Taken from $GOROOT/src/pkg/net/http/chunked needed to write https responses to client. Package goproxy provides a customizable HTTP proxy, supporting hijacking HTTPS connection. The intent of the proxy, is to be usable with reasonable amount of traffic yet, customizable and programmable. The proxy itself is simply an `net/http` handler. Typical usage is Adding a header to each request For printing the content type of all incoming responses note that we used the ProxyCtx context variable here. It contains the request and the response (Req and Resp, Resp is nil if unavailable) of this specific client interaction with the proxy. To print the content type of all responses from a certain url, we'll add a ReqCondition to the OnResponse function: We can write the condition ourselves, conditions can be set on request and on response Caution! If you give a RespCondition to the OnRequest function, you'll get a run time panic! It doesn't make sense to read the response, if you still haven't got it! Finally, we have convenience function to throw a quick response we close the body of the original response, and return a new 403 response with a short message. Example use cases: 1. https://github.com/elazarl/goproxy/tree/master/examples/goproxy-avgsize To measure the average size of an Html served in your site. One can ask all the QA team to access the website by a proxy, and the proxy will measure the average size of all text/html responses from your host. 2. [not yet implemented] All requests to your web servers should be directed through the proxy, when the proxy will detect html pieces sent as a response to AJAX request, it'll send a warning email. 3. https://github.com/elazarl/goproxy/blob/master/examples/goproxy-httpdump/ Generate a real traffic to your website by real users using through proxy. Record the traffic, and try it again for more real load testing. 4. https://github.com/elazarl/goproxy/tree/master/examples/goproxy-no-reddit-at-worktime Will allow browsing to reddit.com between 8:00am and 17:00pm 5. https://github.com/elazarl/goproxy/tree/master/examples/goproxy-jquery-version Will warn if multiple versions of jquery are used in the same domain. 6. https://github.com/elazarl/goproxy/blob/master/examples/goproxy-upside-down-ternet/ Modifies image files in an HTTP response via goproxy's image extension found in ext/.
Package cloud is the root of the packages used to access Google Cloud Services. See https://pkg.go.dev/cloud.google.com/go for a full list of sub-modules. All clients in sub-packages are configurable via client options. These options are described here: https://pkg.go.dev/google.golang.org/api/option. Endpoint configuration is used to specify the URL to which requests are sent. It is used for services that support or require regional endpoints, as well as for other use cases such as testing against fake servers. For example, the Vertex AI service recommends that you configure the endpoint to the location with the features you want that is closest to your physical location or the location of your users. There is no global endpoint for Vertex AI. See Vertex AI - Locations for more details. The following example demonstrates configuring a Vertex AI client with a regional endpoint: All of the clients support authentication via Google Application Default Credentials, or by providing a JSON key file for a Service Account. See examples below. Google Application Default Credentials (ADC) is the recommended way to authorize and authenticate clients. For information on how to create and obtain Application Default Credentials, see https://cloud.google.com/docs/authentication/production. If you have your environment configured correctly you will not need to pass any extra information to the client libraries. Here is an example of a client using ADC to authenticate: You can use a file with credentials to authenticate and authorize, such as a JSON key file associated with a Google service account. Service Account keys can be created and downloaded from https://console.cloud.google.com/iam-admin/serviceaccounts. This example uses the Secret Manger client, but the same steps apply to the all other client libraries this package as well. Example: In some cases (for instance, you don't want to store secrets on disk), you can create credentials from in-memory JSON and use the WithCredentials option. This example uses the Secret Manager client, but the same steps apply to all other client libraries as well. Note that scopes can be found at https://developers.google.com/identity/protocols/oauth2/scopes, and are also provided in all auto-generated libraries: for example, cloud.google.com/go/secretmanager/apiv1 provides DefaultAuthScopes. Example: By default, non-streaming methods, like Create or Get, will have a default deadline applied to the context provided at call time, unless a context deadline is already set. Streaming methods have no default deadline and will run indefinitely. To set timeouts or arrange for cancellation, use context. Transient errors will be retried when correctness allows. Here is an example of setting a timeout for an RPC using context.WithTimeout: Here is an example of setting a timeout for an RPC using github.com/googleapis/gax-go/v2.WithTimeout: Here is an example of how to arrange for an RPC to be canceled, use context.WithCancel: Do not attempt to control the initial connection (dialing) of a service by setting a timeout on the context passed to NewClient. Dialing is non-blocking, so timeouts would be ineffective and would only interfere with credential refreshing, which uses the same context. Connection pooling differs in clients based on their transport. Cloud clients either rely on HTTP or gRPC transports to communicate with Google Cloud. Cloud clients that use HTTP rely on the underlying HTTP transport to cache connections for later re-use. These are cached to the http.MaxIdleConns and http.MaxIdleConnsPerHost settings in http.DefaultTransport by default. For gRPC clients, connection pooling is configurable. Users of Cloud Client Libraries may specify option.WithGRPCConnectionPool(n) as a client option to NewClient calls. This configures the underlying gRPC connections to be pooled and accessed in a round robin fashion. Minimal container images like Alpine lack CA certificates. This causes RPCs to appear to hang, because gRPC retries indefinitely. See https://github.com/googleapis/google-cloud-go/issues/928 for more information. For tips on how to write tests against code that calls into our libraries check out our Debugging Guide. For tips on how to write tests against code that calls into our libraries check out our Testing Guide. Most of the errors returned by the generated clients are wrapped in an github.com/googleapis/gax-go/v2/apierror.APIError and can be further unwrapped into a google.golang.org/grpc/status.Status or google.golang.org/api/googleapi.Error depending on the transport used to make the call (gRPC or REST). Converting your errors to these types can be a useful way to get more information about what went wrong while debugging. APIError gives access to specific details in the error. The transport-specific errors can still be unwrapped using the APIError. If the gRPC transport was used, the google.golang.org/grpc/status.Status can still be parsed using the google.golang.org/grpc/status.FromError function. Semver is used to communicate stability of the sub-modules of this package. Note, some stable sub-modules do contain packages, and sometimes features, that are considered unstable. If something is unstable it will be explicitly labeled as such. Example of package does in an unstable package: Clients that contain alpha and beta in their import path may change or go away without notice. Clients marked stable will maintain compatibility with future versions for as long as we can reasonably sustain. Incompatible changes might be made in some situations, including:
Package api is the root of the packages used to access Google Cloud Services. See https://godoc.org/google.golang.org/api for a full list of sub-packages. Within api there exist numerous clients which connect to Google APIs, and various utility packages. All clients in sub-packages are configurable via client options. These options are described here: https://godoc.org/google.golang.org/api/option. All the clients in sub-packages support authentication via Google Application Default Credentials (see https://cloud.google.com/docs/authentication/production), or by providing a JSON key file for a Service Account. See the authentication examples in https://godoc.org/google.golang.org/api/transport for more details. Due to the auto-generated nature of this collection of libraries, complete APIs or specific versions can appear or go away without notice. As a result, you should always locally vendor any API(s) that your code relies upon. Google APIs follow semver as specified by https://cloud.google.com/apis/design/versioning. The code generator and the code it produces - the libraries in the google.golang.org/api/... subpackages - are beta. Note that versioning and stability is strictly not communicated through Go modules. Go modules are used only for dependency management. Many parameters are specified using ints. However, underlying APIs might operate on a finer granularity, expecting int64, int32, uint64, or uint32, all of whom have different maximum values. Subsequently, specifying an int parameter in one of these clients may result in an error from the API because the value is too large. To see the exact type of int that the API expects, you can inspect the API's discovery doc. A global catalogue pointing to the discovery doc of APIs can be found at https://www.googleapis.com/discovery/v1/apis. This field can be found on all Request/Response structs in the generated clients. All of these types have the JSON `omitempty` field tag present on their fields. This means if a type is set to its default value it will not be marshalled. Sometimes you may actually want to send a default value, for instance sending an int of `0`. In this case you can override the `omitempty` feature by adding the field name to the `ForceSendFields` slice. See docs on any struct for more details. An error returned by a client's Do method may be cast to a *googleapi.Error or unwrapped to an *apierror.APIError. The https://pkg.go.dev/google.golang.org/api/googleapi#Error type is useful for getting the HTTP status code: The https://pkg.go.dev/github.com/googleapis/gax-go/v2/apierror#APIError type is useful for inspecting structured details of the underlying API response, such as the reason for the error and the error domain, which is typically the registered service name of the tool or product that generated the error: If an API call returns an Operation, that means it could take some time to complete the work initiated by the API call. Applications that are interested in the end result of the operation they initiated should wait until the Operation.Done field indicates it is finished. To do this, use the service's Operation client, and a loop, like so:
Package colly implements a HTTP scraping framework
Package httprouter is a trie based high performance HTTP request router. A trivial example is: The router matches incoming requests by the request method and the path. If a handle is registered for this path and method, the router delegates the request to that function. For the methods GET, POST, PUT, PATCH and DELETE shortcut functions exist to register handles, for all other methods router.Handle can be used. The registered path, against which the router matches incoming requests, can contain two types of parameters: Named parameters are dynamic path segments. They match anything until the next '/' or the path end: Catch-all parameters match anything until the path end, including the directory index (the '/' before the catch-all). Since they match anything until the end, catch-all parameters must always be the final path element. The value of parameters is saved as a slice of the Param struct, consisting each of a key and a value. The slice is passed to the Handle func as a third parameter. There are two ways to retrieve the value of a parameter:
`grpc_middleware` is a collection of gRPC middleware packages: interceptors, helpers and tools. gRPC is a fantastic RPC middleware, which sees a lot of adoption in the Golang world. However, the upstream gRPC codebase is relatively bare bones. This package, and most of its child packages provides commonly needed middleware for gRPC: client-side interceptors for retires, server-side interceptors for input validation and auth, functions for chaining said interceptors, metadata convenience methods and more. By default, gRPC doesn't allow one to have more than one interceptor either on the client nor on the server side. `grpc_middleware` provides convenient chaining methods Simple way of turning a multiple interceptors into a single interceptor. Here's an example for server chaining: These interceptors will be executed from left to right: logging, monitoring and auth. Here's an example for client side chaining: These interceptors will be executed from left to right: monitoring and then retry logic. The retry interceptor will call every interceptor that follows it whenever when a retry happens. Implementing your own interceptor is pretty trivial: there are interfaces for that. But the interesting bit exposing common data to handlers (and other middleware), similarly to HTTP Middleware design. For example, you may want to pass the identity of the caller from the auth interceptor all the way to the handling function. For example, a client side interceptor example for auth looks like: Unfortunately, it's not as easy for streaming RPCs. These have the `context.Context` embedded within the `grpc.ServerStream` object. To pass values through context, a wrapper (`WrappedServerStream`) is needed. For example:
Package resty provides Simple HTTP and REST client library for Go.
Package colly implements a HTTP scraping framework
Package otlptracegrpc provides an OTLP span exporter using gRPC. By default the telemetry is sent to https://localhost:4317. Exporter should be created using New. The environment variables described below can be used for configuration. OTEL_EXPORTER_OTLP_ENDPOINT, OTEL_EXPORTER_OTLP_TRACES_ENDPOINT (default: "https://localhost:4317") - target to which the exporter sends telemetry. The target syntax is defined in https://github.com/grpc/grpc/blob/master/doc/naming.md. The value must contain a host. The value may additionally a port, a scheme, and a path. The value accepts "http" and "https" scheme. The value should not contain a query string or fragment. OTEL_EXPORTER_OTLP_TRACES_ENDPOINT takes precedence over OTEL_EXPORTER_OTLP_ENDPOINT. The configuration can be overridden by WithEndpoint, WithInsecure, WithGRPCConn options. OTEL_EXPORTER_OTLP_INSECURE, OTEL_EXPORTER_OTLP_TRACES_INSECURE (default: "false") - setting "true" disables client transport security for the exporter's gRPC connection. You can use this only when an endpoint is provided without the http or https scheme. OTEL_EXPORTER_OTLP_ENDPOINT, OTEL_EXPORTER_OTLP_TRACES_ENDPOINT setting overrides the scheme defined via OTEL_EXPORTER_OTLP_ENDPOINT, OTEL_EXPORTER_OTLP_TRACES_ENDPOINT. OTEL_EXPORTER_OTLP_TRACES_INSECURE takes precedence over OTEL_EXPORTER_OTLP_INSECURE. The configuration can be overridden by WithInsecure, WithGRPCConn options. OTEL_EXPORTER_OTLP_HEADERS, OTEL_EXPORTER_OTLP_TRACES_HEADERS (default: none) - key-value pairs used as gRPC metadata associated with gRPC requests. The value is expected to be represented in a format matching to the W3C Baggage HTTP Header Content Format, except that additional semi-colon delimited metadata is not supported. Example value: "key1=value1,key2=value2". OTEL_EXPORTER_OTLP_TRACES_HEADERS takes precedence over OTEL_EXPORTER_OTLP_HEADERS. The configuration can be overridden by WithHeaders option. OTEL_EXPORTER_OTLP_TIMEOUT, OTEL_EXPORTER_OTLP_TRACES_TIMEOUT (default: "10000") - maximum time in milliseconds the OTLP exporter waits for each batch export. OTEL_EXPORTER_OTLP_TRACES_TIMEOUT takes precedence over OTEL_EXPORTER_OTLP_TIMEOUT. The configuration can be overridden by WithTimeout option. OTEL_EXPORTER_OTLP_COMPRESSION, OTEL_EXPORTER_OTLP_TRACES_COMPRESSION (default: none) - the gRPC compressor the exporter uses. Supported value: "gzip". OTEL_EXPORTER_OTLP_TRACES_COMPRESSION takes precedence over OTEL_EXPORTER_OTLP_COMPRESSION. The configuration can be overridden by WithCompressor, WithGRPCConn options. OTEL_EXPORTER_OTLP_CERTIFICATE, OTEL_EXPORTER_OTLP_TRACES_CERTIFICATE (default: none) - the filepath to the trusted certificate to use when verifying a server's TLS credentials. OTEL_EXPORTER_OTLP_TRACES_CERTIFICATE takes precedence over OTEL_EXPORTER_OTLP_CERTIFICATE. The configuration can be overridden by WithTLSCredentials, WithGRPCConn options. OTEL_EXPORTER_OTLP_CLIENT_CERTIFICATE, OTEL_EXPORTER_OTLP_TRACES_CLIENT_CERTIFICATE (default: none) - the filepath to the client certificate/chain trust for clients private key to use in mTLS communication in PEM format. OTEL_EXPORTER_OTLP_TRACES_CLIENT_CERTIFICATE takes precedence over OTEL_EXPORTER_OTLP_CLIENT_CERTIFICATE. The configuration can be overridden by WithTLSCredentials, WithGRPCConn options. OTEL_EXPORTER_OTLP_CLIENT_KEY, OTEL_EXPORTER_OTLP_TRACES_CLIENT_KEY (default: none) - the filepath to the clients private key to use in mTLS communication in PEM format. OTEL_EXPORTER_OTLP_TRACES_CLIENT_KEY takes precedence over OTEL_EXPORTER_OTLP_CLIENT_KEY. The configuration can be overridden by WithTLSCredentials, WithGRPCConn option.
Package restful , a lean package for creating REST-style WebServices without magic. A WebService has a collection of Route objects that dispatch incoming Http Requests to a function calls. Typically, a WebService has a root path (e.g. /users) and defines common MIME types for its routes. WebServices must be added to a container (see below) in order to handler Http requests from a server. A Route is defined by a HTTP method, an URL path and (optionally) the MIME types it consumes (Content-Type) and produces (Accept). This package has the logic to find the best matching Route and if found, call its Function. The (*Request, *Response) arguments provide functions for reading information from the request and writing information back to the response. See the example https://github.com/emicklei/go-restful/blob/master/examples/restful-user-resource.go with a full implementation. A Route parameter can be specified using the format "uri/{var[:regexp]}" or the special version "uri/{var:*}" for matching the tail of the path. For example, /persons/{name:[A-Z][A-Z]} can be used to restrict values for the parameter "name" to only contain capital alphabetic characters. Regular expressions must use the standard Go syntax as described in the regexp package. (https://code.google.com/p/re2/wiki/Syntax) This feature requires the use of a CurlyRouter. A Container holds a collection of WebServices, Filters and a http.ServeMux for multiplexing http requests. Using the statements "restful.Add(...) and restful.Filter(...)" will register WebServices and Filters to the Default Container. The Default container of go-restful uses the http.DefaultServeMux. You can create your own Container and create a new http.Server for that particular container. A filter dynamically intercepts requests and responses to transform or use the information contained in the requests or responses. You can use filters to perform generic logging, measurement, authentication, redirect, set response headers etc. In the restful package there are three hooks into the request,response flow where filters can be added. Each filter must define a FilterFunction: Use the following statement to pass the request,response pair to the next filter or RouteFunction These are processed before any registered WebService. These are processed before any Route of a WebService. These are processed before calling the function associated with the Route. See the example https://github.com/emicklei/go-restful/blob/master/examples/restful-filters.go with full implementations. Two encodings are supported: gzip and deflate. To enable this for all responses: If a Http request includes the Accept-Encoding header then the response content will be compressed using the specified encoding. Alternatively, you can create a Filter that performs the encoding and install it per WebService or Route. See the example https://github.com/emicklei/go-restful/blob/master/examples/restful-encoding-filter.go By installing a pre-defined container filter, your Webservice(s) can respond to the OPTIONS Http request. By installing the filter of a CrossOriginResourceSharing (CORS), your WebService(s) can handle CORS requests. Unexpected things happen. If a request cannot be processed because of a failure, your service needs to tell via the response what happened and why. For this reason HTTP status codes exist and it is important to use the correct code in every exceptional situation. If path or query parameters are not valid (content or type) then use http.StatusBadRequest. Despite a valid URI, the resource requested may not be available If the application logic could not process the request (or write the response) then use http.StatusInternalServerError. The request has a valid URL but the method (GET,PUT,POST,...) is not allowed. The request does not have or has an unknown Accept Header set for this operation. The request does not have or has an unknown Content-Type Header set for this operation. In addition to setting the correct (error) Http status code, you can choose to write a ServiceError message on the response. This package has several options that affect the performance of your service. It is important to understand them and how you can change it. DoNotRecover controls whether panics will be caught to return HTTP 500. If set to false, the container will recover from panics. Default value is true If content encoding is enabled then the default strategy for getting new gzip/zlib writers and readers is to use a sync.Pool. Because writers are expensive structures, performance is even more improved when using a preloaded cache. You can also inject your own implementation. This package has the means to produce detail logging of the complete Http request matching process and filter invocation. Enabling this feature requires you to set an implementation of restful.StdLogger (e.g. log.Logger) instance such as: The restful.SetLogger() method allows you to override the logger used by the package. By default restful uses the standard library `log` package and logs to stdout. Different logging packages are supported as long as they conform to `StdLogger` interface defined in the `log` sub-package, writing an adapter for your preferred package is simple. (c) 2012-2015, http://ernestmicklei.com. MIT License
Package resty provides Simple HTTP and REST client library for Go.
Package restful , a lean package for creating REST-style WebServices without magic. A WebService has a collection of Route objects that dispatch incoming Http Requests to a function calls. Typically, a WebService has a root path (e.g. /users) and defines common MIME types for its routes. WebServices must be added to a container (see below) in order to handler Http requests from a server. A Route is defined by a HTTP method, an URL path and (optionally) the MIME types it consumes (Content-Type) and produces (Accept). This package has the logic to find the best matching Route and if found, call its Function. The (*Request, *Response) arguments provide functions for reading information from the request and writing information back to the response. See the example https://github.com/emicklei/go-restful/blob/v3/examples/user-resource/restful-user-resource.go with a full implementation. A Route parameter can be specified using the format "uri/{var[:regexp]}" or the special version "uri/{var:*}" for matching the tail of the path. For example, /persons/{name:[A-Z][A-Z]} can be used to restrict values for the parameter "name" to only contain capital alphabetic characters. Regular expressions must use the standard Go syntax as described in the regexp package. (https://code.google.com/p/re2/wiki/Syntax) This feature requires the use of a CurlyRouter. A Container holds a collection of WebServices, Filters and a http.ServeMux for multiplexing http requests. Using the statements "restful.Add(...) and restful.Filter(...)" will register WebServices and Filters to the Default Container. The Default container of go-restful uses the http.DefaultServeMux. You can create your own Container and create a new http.Server for that particular container. A filter dynamically intercepts requests and responses to transform or use the information contained in the requests or responses. You can use filters to perform generic logging, measurement, authentication, redirect, set response headers etc. In the restful package there are three hooks into the request,response flow where filters can be added. Each filter must define a FilterFunction: Use the following statement to pass the request,response pair to the next filter or RouteFunction These are processed before any registered WebService. These are processed before any Route of a WebService. These are processed before calling the function associated with the Route. See the example https://github.com/emicklei/go-restful/blob/v3/examples/filters/restful-filters.go with full implementations. Two encodings are supported: gzip and deflate. To enable this for all responses: If a Http request includes the Accept-Encoding header then the response content will be compressed using the specified encoding. Alternatively, you can create a Filter that performs the encoding and install it per WebService or Route. See the example https://github.com/emicklei/go-restful/blob/v3/examples/encoding/restful-encoding-filter.go By installing a pre-defined container filter, your Webservice(s) can respond to the OPTIONS Http request. By installing the filter of a CrossOriginResourceSharing (CORS), your WebService(s) can handle CORS requests. Unexpected things happen. If a request cannot be processed because of a failure, your service needs to tell via the response what happened and why. For this reason HTTP status codes exist and it is important to use the correct code in every exceptional situation. If path or query parameters are not valid (content or type) then use http.StatusBadRequest. Despite a valid URI, the resource requested may not be available If the application logic could not process the request (or write the response) then use http.StatusInternalServerError. The request has a valid URL but the method (GET,PUT,POST,...) is not allowed. The request does not have or has an unknown Accept Header set for this operation. The request does not have or has an unknown Content-Type Header set for this operation. In addition to setting the correct (error) Http status code, you can choose to write a ServiceError message on the response. This package has several options that affect the performance of your service. It is important to understand them and how you can change it. DoNotRecover controls whether panics will be caught to return HTTP 500. If set to false, the container will recover from panics. Default value is true If content encoding is enabled then the default strategy for getting new gzip/zlib writers and readers is to use a sync.Pool. Because writers are expensive structures, performance is even more improved when using a preloaded cache. You can also inject your own implementation. This package has the means to produce detail logging of the complete Http request matching process and filter invocation. Enabling this feature requires you to set an implementation of restful.StdLogger (e.g. log.Logger) instance such as: The restful.SetLogger() method allows you to override the logger used by the package. By default restful uses the standard library `log` package and logs to stdout. Different logging packages are supported as long as they conform to `StdLogger` interface defined in the `log` sub-package, writing an adapter for your preferred package is simple. (c) 2012-2015, http://ernestmicklei.com. MIT License
Package influxdb is the root package of InfluxDB, the scalable datastore for metrics, events, and real-time analytics. If you're looking for the Go HTTP client for InfluxDB, see package github.com/influxdata/influxdb/client/v2.
This executable provides an HTTP server that watches for file system changes to .go files within the working directory (and all nested go packages). Navigating to the configured host and port in a web browser will display the latest results of running `go test` in each go package.
Package controllerruntime provides tools to construct Kubernetes-style controllers that manipulate both Kubernetes CRDs and aggregated/built-in Kubernetes APIs. It defines easy helpers for the common use cases when building CRDs, built on top of customizable layers of abstraction. Common cases should be easy, and uncommon cases should be possible. In general, controller-runtime tries to guide users towards Kubernetes controller best-practices. The main entrypoint for controller-runtime is this root package, which contains all of the common types needed to get started building controllers: The examples in this package walk through a basic controller setup. The kubebuilder book (https://book.kubebuilder.io) has some more in-depth walkthroughs. controller-runtime favors structs with sane defaults over constructors, so it's fairly common to see structs being used directly in controller-runtime. A brief-ish walkthrough of the layout of this library can be found below. Each package contains more information about how to use it. Frequently asked questions about using controller-runtime and designing controllers can be found at https://github.com/kubernetes-sigs/controller-runtime/blob/main/FAQ.md. Every controller and webhook is ultimately run by a Manager (pkg/manager). A manager is responsible for running controllers and webhooks, and setting up common dependencies, like shared caches and clients, as well as managing leader election (pkg/leaderelection). Managers are generally configured to gracefully shut down controllers on pod termination by wiring up a signal handler (pkg/manager/signals). Controllers (pkg/controller) use events (pkg/event) to eventually trigger reconcile requests. They may be constructed manually, but are often constructed with a Builder (pkg/builder), which eases the wiring of event sources (pkg/source), like Kubernetes API object changes, to event handlers (pkg/handler), like "enqueue a reconcile request for the object owner". Predicates (pkg/predicate) can be used to filter which events actually trigger reconciles. There are pre-written utilities for the common cases, and interfaces and helpers for advanced cases. Controller logic is implemented in terms of Reconcilers (pkg/reconcile). A Reconciler implements a function which takes a reconcile Request containing the name and namespace of the object to reconcile, reconciles the object, and returns a Response or an error indicating whether to requeue for a second round of processing. Reconcilers use Clients (pkg/client) to access API objects. The default client provided by the manager reads from a local shared cache (pkg/cache) and writes directly to the API server, but clients can be constructed that only talk to the API server, without a cache. The Cache will auto-populate with watched objects, as well as when other structured objects are requested. The default split client does not promise to invalidate the cache during writes (nor does it promise sequential create/get coherence), and code should not assume a get immediately following a create/update will return the updated resource. Caches may also have indexes, which can be created via a FieldIndexer (pkg/client) obtained from the manager. Indexes can used to quickly and easily look up all objects with certain fields set. Reconcilers may retrieve event recorders (pkg/recorder) to emit events using the manager. Clients, Caches, and many other things in Kubernetes use Schemes (pkg/scheme) to associate Go types to Kubernetes API Kinds (Group-Version-Kinds, to be specific). Similarly, webhooks (pkg/webhook/admission) may be implemented directly, but are often constructed using a builder (pkg/webhook/admission/builder). They are run via a server (pkg/webhook) which is managed by a Manager. Logging (pkg/log) in controller-runtime is done via structured logs, using a log set of interfaces called logr (https://pkg.go.dev/github.com/go-logr/logr). While controller-runtime provides easy setup for using Zap (https://go.uber.org/zap, pkg/log/zap), you can provide any implementation of logr as the base logger for controller-runtime. Metrics (pkg/metrics) provided by controller-runtime are registered into a controller-runtime-specific Prometheus metrics registry. The manager can serve these by an HTTP endpoint, and additional metrics may be registered to this Registry as normal. You can easily build integration and unit tests for your controllers and webhooks using the test Environment (pkg/envtest). This will automatically stand up a copy of etcd and kube-apiserver, and provide the correct options to connect to the API server. It's designed to work well with the Ginkgo testing framework, but should work with any testing setup. This example creates a simple application Controller that is configured for ReplicaSets and Pods. * Create a new application for ReplicaSets that manages Pods owned by the ReplicaSet and calls into ReplicaSetReconciler. * Start the application. This example creates a simple application Controller that is configured for ReplicaSets and Pods. This application controller will be running leader election with the provided configuration in the manager options. If leader election configuration is not provided, controller runs leader election with default values. Default values taken from: https://github.com/kubernetes/component-base/blob/master/config/v1alpha1/defaults.go * defaultLeaseDuration = 15 * time.Second * defaultRenewDeadline = 10 * time.Second * defaultRetryPeriod = 2 * time.Second * Create a new application for ReplicaSets that manages Pods owned by the ReplicaSet and calls into ReplicaSetReconciler. * Start the application.
Package logging contains a Cloud Logging client suitable for writing logs. For reading logs, and working with sinks, metrics and monitored resources, see package cloud.google.com/go/logging/logadmin. This client uses Logging API v2. See https://cloud.google.com/logging/docs/api/v2/ for an introduction to the API. Use a Client to interact with the Cloud Logging API. For most use cases, you'll want to add log entries to a buffer to be periodically flushed (automatically and asynchronously) to the Cloud Logging service. You should call Client.Close before your program exits to flush any buffered log entries to the Cloud Logging service. For critical errors, you may want to send your log entries immediately. LogSync is slow and will block until the log entry has been sent, so it is not recommended for normal use. For cases when runtime environment supports out-of-process log ingestion, like logging agent, you can opt-in to write log entries to io.Writer instead of ingesting them to Cloud Logging service. Usually, you will use os.Stdout or os.Stderr as writers because Google Cloud logging agents are configured to capture logs from standard output. The entries will be Jsonified and wrote as one line strings following the structured logging format. See https://cloud.google.com/logging/docs/structured-logging#special-payload-fields for the format description. To instruct Logger to redirect log entries add RedirectAsJSON() LoggerOption`s. An entry payload can be a string, as in the examples above. It can also be any value that can be marshaled to a JSON object, like a map[string]interface{} or a struct: If you have a []byte of JSON, wrap it in json.RawMessage: If you have proto.Message and want to send it as a protobuf payload, marshal it to anypb.Any: You may want use a standard log.Logger in your program. An Entry may have one of a number of severity levels associated with it. You can view Cloud logs for projects at https://console.cloud.google.com/logs/viewer. Use the dropdown at the top left. When running from a Google Cloud Platform VM, select "GCE VM Instance". Otherwise, select "Google Project" and then the project ID. Logs for organizations, folders and billing accounts can be viewed on the command line with the "gcloud logging read" command. To group all the log entries written during a single HTTP request, create two Loggers, a "parent" and a "child," with different log IDs. Both should be in the same project, and have the same MonitoredResource type and labels. - A child entry's timestamp must be within the time interval covered by the parent request. (i.e., before the parent.Timestamp and after the parent.Timestamp - parent.HTTPRequest.Latency. This assumes the parent.Timestamp marks the end of the request.) - The trace field must be populated in all of the entries and match exactly. You should observe the child log entries grouped under the parent on the console. The parent entry will not inherit the severity of its children; you must update the parent severity yourself.
Package httptest was formerly known as [https://github.com/markbates/willie](https://github.com/markbates/willie). It is used to test HTTP applications easily.
Package otlpmetricgrpc provides an OTLP metrics exporter using gRPC. By default the telemetry is sent to https://localhost:4317. Exporter should be created using New and used with a metric.PeriodicReader. The environment variables described below can be used for configuration. OTEL_EXPORTER_OTLP_ENDPOINT, OTEL_EXPORTER_OTLP_METRICS_ENDPOINT (default: "https://localhost:4317") - target to which the exporter sends telemetry. The target syntax is defined in https://github.com/grpc/grpc/blob/master/doc/naming.md. The value must contain a host. The value may additionally a port, a scheme, and a path. The value accepts "http" and "https" scheme. The value should not contain a query string or fragment. OTEL_EXPORTER_OTLP_METRICS_ENDPOINT takes precedence over OTEL_EXPORTER_OTLP_ENDPOINT. The configuration can be overridden by WithEndpoint, WithInsecure, WithGRPCConn options. OTEL_EXPORTER_OTLP_INSECURE, OTEL_EXPORTER_OTLP_METRICS_INSECURE (default: "false") - setting "true" disables client transport security for the exporter's gRPC connection. You can use this only when an endpoint is provided without the http or https scheme. OTEL_EXPORTER_OTLP_ENDPOINT, OTEL_EXPORTER_OTLP_METRICS_ENDPOINT setting overrides the scheme defined via OTEL_EXPORTER_OTLP_ENDPOINT, OTEL_EXPORTER_OTLP_METRICS_ENDPOINT. OTEL_EXPORTER_OTLP_METRICS_INSECURE takes precedence over OTEL_EXPORTER_OTLP_INSECURE. The configuration can be overridden by WithInsecure, WithGRPCConn options. OTEL_EXPORTER_OTLP_HEADERS, OTEL_EXPORTER_OTLP_METRICS_HEADERS (default: none) - key-value pairs used as gRPC metadata associated with gRPC requests. The value is expected to be represented in a format matching to the W3C Baggage HTTP Header Content Format, except that additional semi-colon delimited metadata is not supported. Example value: "key1=value1,key2=value2". OTEL_EXPORTER_OTLP_METRICS_HEADERS takes precedence over OTEL_EXPORTER_OTLP_HEADERS. The configuration can be overridden by WithHeaders option. OTEL_EXPORTER_OTLP_TIMEOUT, OTEL_EXPORTER_OTLP_METRICS_TIMEOUT (default: "10000") - maximum time in milliseconds the OTLP exporter waits for each batch export. OTEL_EXPORTER_OTLP_METRICS_TIMEOUT takes precedence over OTEL_EXPORTER_OTLP_TIMEOUT. The configuration can be overridden by WithTimeout option. OTEL_EXPORTER_OTLP_COMPRESSION, OTEL_EXPORTER_OTLP_METRICS_COMPRESSION (default: none) - the gRPC compressor the exporter uses. Supported value: "gzip". OTEL_EXPORTER_OTLP_METRICS_COMPRESSION takes precedence over OTEL_EXPORTER_OTLP_COMPRESSION. The configuration can be overridden by WithCompressor, WithGRPCConn options. OTEL_EXPORTER_OTLP_CERTIFICATE, OTEL_EXPORTER_OTLP_METRICS_CERTIFICATE (default: none) - the filepath to the trusted certificate to use when verifying a server's TLS credentials. OTEL_EXPORTER_OTLP_METRICS_CERTIFICATE takes precedence over OTEL_EXPORTER_OTLP_CERTIFICATE. The configuration can be overridden by WithTLSCredentials, WithGRPCConn options. OTEL_EXPORTER_OTLP_CLIENT_CERTIFICATE, OTEL_EXPORTER_OTLP_METRICS_CLIENT_CERTIFICATE (default: none) - the filepath to the client certificate/chain trust for clients private key to use in mTLS communication in PEM format. OTEL_EXPORTER_OTLP_METRICS_CLIENT_CERTIFICATE takes precedence over OTEL_EXPORTER_OTLP_CLIENT_CERTIFICATE. The configuration can be overridden by WithTLSCredentials, WithGRPCConn options. OTEL_EXPORTER_OTLP_CLIENT_KEY, OTEL_EXPORTER_OTLP_METRICS_CLIENT_KEY (default: none) - the filepath to the clients private key to use in mTLS communication in PEM format. OTEL_EXPORTER_OTLP_METRICS_CLIENT_KEY takes precedence over OTEL_EXPORTER_OTLP_CLIENT_KEY. The configuration can be overridden by WithTLSCredentials, WithGRPCConn option. OTEL_EXPORTER_OTLP_METRICS_TEMPORALITY_PREFERENCE (default: "cumulative") - aggregation temporality to use on the basis of instrument kind. Supported values: The configuration can be overridden by WithTemporalitySelector option. OTEL_EXPORTER_OTLP_METRICS_DEFAULT_HISTOGRAM_AGGREGATION (default: "explicit_bucket_histogram") - default aggregation to use for histogram instruments. Supported values: The configuration can be overridden by WithAggregationSelector option.
Package cloud is the root of the packages used to access Google Cloud Services. See https://godoc.org/cloud.google.com/go for a full list of sub-packages. All clients in sub-packages are configurable via client options. These options are described here: https://godoc.org/google.golang.org/api/option. All the clients in sub-packages support authentication via Google Application Default Credentials (see https://cloud.google.com/docs/authentication/production), or by providing a JSON key file for a Service Account. See the authentication examples in this package for details. By default, all requests in sub-packages will run indefinitely, retrying on transient errors when correctness allows. To set timeouts or arrange for cancellation, use contexts. See the examples for details. Do not attempt to control the initial connection (dialing) of a service by setting a timeout on the context passed to NewClient. Dialing is non-blocking, so timeouts would be ineffective and would only interfere with credential refreshing, which uses the same context. Connection pooling differs in clients based on their transport. Cloud clients either rely on HTTP or gRPC transports to communicate with Google Cloud. Cloud clients that use HTTP (bigquery, compute, storage, and translate) rely on the underlying HTTP transport to cache connections for later re-use. These are cached to the default http.MaxIdleConns and http.MaxIdleConnsPerHost settings in http.DefaultTransport. For gRPC clients (all others in this repo), connection pooling is configurable. Users of cloud client libraries may specify option.WithGRPCConnectionPool(n) as a client option to NewClient calls. This configures the underlying gRPC connections to be pooled and addressed in a round robin fashion. Minimal docker images like Alpine lack CA certificates. This causes RPCs to appear to hang, because gRPC retries indefinitely. See https://github.com/GoogleCloudPlatform/google-cloud-go/issues/928 for more information. To see gRPC logs, set the environment variable GRPC_GO_LOG_SEVERITY_LEVEL. See https://godoc.org/google.golang.org/grpc/grpclog for more information. For HTTP logging, set the GODEBUG environment variable to "http2debug=1" or "http2debug=2". Google Application Default Credentials is the recommended way to authorize and authenticate clients. For information on how to create and obtain Application Default Credentials, see https://developers.google.com/identity/protocols/application-default-credentials. To arrange for an RPC to be canceled, use context.WithCancel. You can use a file with credentials to authenticate and authorize, such as a JSON key file associated with a Google service account. Service Account keys can be created and downloaded from https://console.developers.google.com/permissions/serviceaccounts. This example uses the Datastore client, but the same steps apply to the other client libraries underneath this package. In some cases (for instance, you don't want to store secrets on disk), you can create credentials from in-memory JSON and use the WithCredentials option. The google package in this example is at golang.org/x/oauth2/google. This example uses the PubSub client, but the same steps apply to the other client libraries underneath this package. To set a timeout for an RPC, use context.WithTimeout.
Package middleware `middleware` is a collection of gRPC middleware packages: interceptors, helpers and tools. gRPC is a fantastic RPC middleware, which sees a lot of adoption in the Golang world. However, the upstream gRPC codebase is relatively bare bones. This package, and most of its child packages provides commonly needed middleware for gRPC: client-side interceptors for retires, server-side interceptors for input validation and auth, functions for chaining said interceptors, metadata convenience methods and more. Simple way of turning a multiple interceptors into a single interceptor. Here's an example for server chaining: These interceptors will be executed from left to right: logging, monitoring and auth. Here's an example for client side chaining: These interceptors will be executed from left to right: monitoring and then retry logic. The retry interceptor will call every interceptor that follows it whenever when a retry happens. Implementing your own interceptor is pretty trivial: there are interfaces for that. But the interesting bit exposing common data to handlers (and other middleware), similarly to HTTP Middleware design. For example, you may want to pass the identity of the caller from the auth interceptor all the way to the handling function. For example, a client side interceptor example for auth looks like: Unfortunately, it's not as easy for streaming RPCs. These have the `context.Context` embedded within the `grpc.ServerStream` object. To pass values through context, a wrapper (`WrappedServerStream`) is needed. For example:
Package httpin helps decoding an HTTP request to a custom struct by binding data with querystring (query params), HTTP headers, form data, JSON/XML payloads, URL path params, and file uploads (multipart/form-data).
Package testify is a set of packages that provide many tools for testifying that your code will behave as you intend. testify contains the following packages: The assert package provides a comprehensive set of assertion functions that tie in to the Go testing system. The http package contains tools to make it easier to test http activity using the Go testing system. The mock package provides a system by which it is possible to mock your objects and verify calls are happening as expected. The suite package provides a basic structure for using structs as testing suites, and methods on those structs as tests. It includes setup/teardown functionality in the way of interfaces.
Package httprouter is a trie based high performance HTTP request router. A trivial example is: The router matches incoming requests by the request method and the path. If a handle is registered for this path and method, the router delegates the request to that function. For the methods GET, POST, PUT, PATCH and DELETE shortcut functions exist to register handles, for all other methods router.Handle can be used. The registered path, against which the router matches incoming requests, can contain two types of parameters: Named parameters are dynamic path segments. They match anything until the next '/' or the path end: Catch-all parameters match anything until the path end, including the directory index (the '/' before the catch-all). Since they match anything until the end, catch-all parameters must always be the final path element. The value of parameters is saved as a slice of the Param struct, consisting each of a key and a value. The slice is passed to the Handle func as a third parameter. There are two ways to retrieve the value of a parameter:
Command hey is an HTTP load generator.
Package acceptencoding provides customizations associated with Accept Encoding Header. The Go HTTP client automatically supports accept-encoding and content-encoding gzip by default. This default behavior is not desired by the SDK, and prevents validating the response body's checksum. To prevent this the SDK must manually control usage of content-encoding gzip. To control content-encoding, the SDK must always set the `Accept-Encoding` header to a value. This prevents the HTTP client from using gzip automatically. When gzip is enabled on the API client, the SDK's customization will control decompressing the gzip data in order to not break the checksum validation. When gzip is disabled, the API client will disable gzip, preventing the HTTP client's default behavior. An `EnableAcceptEncodingGzip` option may or may not be present depending on the client using the below middleware. The option if present can be used to enable auto decompressing gzip by the SDK.
Package httpclient provides http client used for SDK.
Package httpbin providers HTTP handlers for httpbin.org endpoints and a multiplexer to directly hook it up to any http.Server or httptest.Server.
Package gorequest inspired by Nodejs SuperAgent provides easy-way to write http client
Package azcore implements an HTTP request/response middleware pipeline used by Azure SDK clients. The middleware consists of three components. A Policy can be implemented in two ways; as a first-class function for a stateless Policy, or as a method on a type for a stateful Policy. Note that HTTP requests made via the same pipeline share the same Policy instances, so if a Policy mutates its state it MUST be properly synchronized to avoid race conditions. A Policy's Do method is called when an HTTP request wants to be sent over the network. The Do method can perform any operation(s) it desires. For example, it can log the outgoing request, mutate the URL, headers, and/or query parameters, inject a failure, etc. Once the Policy has successfully completed its request work, it must call the Next() method on the *policy.Request instance in order to pass the request to the next Policy in the chain. When an HTTP response comes back, the Policy then gets a chance to process the response/error. The Policy instance can log the response, retry the operation if it failed due to a transient error or timeout, unmarshal the response body, etc. Once the Policy has successfully completed its response work, it must return the *http.Response and error instances to its caller. Template for implementing a stateless Policy: Template for implementing a stateful Policy: The Transporter interface is responsible for sending the HTTP request and returning the corresponding HTTP response or error. The Transporter is invoked by the last Policy in the chain. The default Transporter implementation uses a shared http.Client from the standard library. The same stateful/stateless rules for Policy implementations apply to Transporter implementations. To use the Policy and Transporter instances, an application passes them to the runtime.NewPipeline function. The specified Policy instances form a chain and are invoked in the order provided to NewPipeline followed by the Transporter. Once the Pipeline has been created, create a runtime.Request instance and pass it to Pipeline's Do method. The Pipeline.Do method sends the specified Request through the chain of Policy and Transporter instances. The response/error is then sent through the same chain of Policy instances in reverse order. For example, assuming there are Policy types PolicyA, PolicyB, and PolicyC along with TransportA. The flow of Request and Response looks like the following: The Request instance passed to Pipeline's Do method is a wrapper around an *http.Request. It also contains some internal state and provides various convenience methods. You create a Request instance by calling the runtime.NewRequest function: If the Request should contain a body, call the SetBody method. A seekable stream is required so that upon retry, the retry Policy instance can seek the stream back to the beginning before retrying the network request and re-uploading the body. Operations like JSON-MERGE-PATCH send a JSON null to indicate a value should be deleted. This requirement conflicts with the SDK's default marshalling that specifies "omitempty" as a means to resolve the ambiguity between a field to be excluded and its zero-value. In the above example, Name and Count are defined as pointer-to-type to disambiguate between a missing value (nil) and a zero-value (0) which might have semantic differences. In a PATCH operation, any fields left as nil are to have their values preserved. When updating a Widget's count, one simply specifies the new value for Count, leaving Name nil. To fulfill the requirement for sending a JSON null, the NullValue() function can be used. This sends an explict "null" for Count, indicating that any current value for Count should be deleted. When the HTTP response is received, the *http.Response is returned directly. Each Policy instance can inspect/mutate the *http.Response. To enable logging, set environment variable AZURE_SDK_GO_LOGGING to "all" before executing your program. By default the logger writes to stderr. This can be customized by calling log.SetListener, providing a callback that writes to the desired location. Any custom logging implementation MUST provide its own synchronization to handle concurrent invocations. See the docs for the log package for further details. Pageable operations return potentially large data sets spread over multiple GET requests. The result of each GET is a "page" of data consisting of a slice of items. Pageable operations can be identified by their New*Pager naming convention and return type of *runtime.Pager[T]. The call to WidgetClient.NewListWidgetsPager() returns an instance of *runtime.Pager[T] for fetching pages and determining if there are more pages to fetch. No IO calls are made until the NextPage() method is invoked. Long-running operations (LROs) are operations consisting of an initial request to start the operation followed by polling to determine when the operation has reached a terminal state. An LRO's terminal state is one of the following values. LROs can be identified by their Begin* prefix and their return type of *runtime.Poller[T]. When a call to WidgetClient.BeginCreateOrUpdate() returns a nil error, it means that the LRO has started. It does _not_ mean that the widget has been created or updated (or failed to be created/updated). The *runtime.Poller[T] provides APIs for determining the state of the LRO. To wait for the LRO to complete, call the PollUntilDone() method. The call to PollUntilDone() will block the current goroutine until the LRO has reached a terminal state or the context is canceled/timed out. Note that LROs can take anywhere from several seconds to several minutes. The duration is operation-dependent. Due to this variant behavior, pollers do _not_ have a preconfigured time-out. Use a context with the appropriate cancellation mechanism as required. Pollers provide the ability to serialize their state into a "resume token" which can be used by another process to recreate the poller. This is achieved via the runtime.Poller[T].ResumeToken() method. Note that a token can only be obtained for a poller that's in a non-terminal state. Also note that any subsequent calls to poller.Poll() might change the poller's state. In this case, a new token should be created. After the token has been obtained, it can be used to recreate an instance of the originating poller. When resuming a poller, no IO is performed, and zero-value arguments can be used for everything but the Options.ResumeToken. Resume tokens are unique per service client and operation. Attempting to resume a poller for LRO BeginB() with a token from LRO BeginA() will result in an error. The fake package contains types used for constructing in-memory fake servers used in unit tests. This allows writing tests to cover various success/error conditions without the need for connecting to a live service. Please see https://github.com/Azure/azure-sdk-for-go/tree/main/sdk/samples/fakes for details and examples on how to use fakes.
Package certmagic automates the obtaining and renewal of TLS certificates, including TLS & HTTPS best practices such as robust OCSP stapling, caching, HTTP->HTTPS redirects, and more. Its high-level API serves your HTTP handlers over HTTPS if you simply give the domain name(s) and the http.Handler; CertMagic will create and run the HTTPS server for you, fully managing certificates during the lifetime of the server. Similarly, it can be used to start TLS listeners or return a ready-to-use tls.Config -- whatever layer you need TLS for, CertMagic makes it easy. See the HTTPS, Listen, and TLS functions for that. If you need more control, create a Cache using NewCache() and then make a Config using New(). You can then call Manage() on the config. But if you use this lower-level API, you'll have to be sure to solve the HTTP and TLS-ALPN challenges yourself (unless you disabled them or use the DNS challenge) by using the provided Config.GetCertificate function in your tls.Config and/or Config.HTTPChallangeHandler in your HTTP handler. See the package's README for more instruction.
Package certmagic automates the obtaining and renewal of TLS certificates, including TLS & HTTPS best practices such as robust OCSP stapling, caching, HTTP->HTTPS redirects, and more. Its high-level API serves your HTTP handlers over HTTPS if you simply give the domain name(s) and the http.Handler; CertMagic will create and run the HTTPS server for you, fully managing certificates during the lifetime of the server. Similarly, it can be used to start TLS listeners or return a ready-to-use tls.Config -- whatever layer you need TLS for, CertMagic makes it easy. See the HTTPS, Listen, and TLS functions for that. If you need more control, create a Cache using NewCache() and then make a Config using New(). You can then call Manage() on the config. But if you use this lower-level API, you'll have to be sure to solve the HTTP and TLS-ALPN challenges yourself (unless you disabled them or use the DNS challenge) by using the provided Config.GetCertificate function in your tls.Config and/or Config.HTTPChallangeHandler in your HTTP handler. See the package's README for more instruction.
Package receiver defines components that allows the collector to receive metrics, traces and logs. Receiver receives data from a source (either from a remote source via network or scrapes from a local host) and pushes the data to the pipelines it is attached to by calling the nextConsumer.Consume*() function. The nextConsumer.Consume*() function may return an error to indicate that the data was not accepted. There are 2 types of possible errors: Permanent and non-Permanent. The receiver must check the type of the error using IsPermanent() helper. If the error is Permanent, then the nextConsumer.Consume*() call should not be retried with the same data. This typically happens when the data cannot be serialized by the exporter that is attached to the pipeline or when the destination refuses the data because it cannot decode it. The receiver must indicate to the source from which it received the data that the received data was bad, if the receiving protocol allows to do that. In case of OTLP/HTTP for example, this means that HTTP 400 response is returned to the sender. If the error is non-Permanent then the nextConsumer.Consume*() call should be retried with the same data. This may be done by the receiver itself, however typically it is done by the original sender, after the receiver returns a response to the sender indicating that the Collector is currently overloaded and the request must be retried. In case of OTLP/HTTP for example, this means that HTTP 429 or 503 response is returned. The receivers that receive data via a network protocol that support acknowledgments MUST follow this order of operations: This ensures there are strong delivery guarantees once the data is acknowledged by the Collector. Similarly, receivers that use checkpointing to remember the position of last processed data (e.g. via storage extension) MUST store the checkpoint only AFTER the Consume*() call returns.
Package handlers is a collection of handlers (aka "HTTP middleware") for use with Go's net/http package (or any framework supporting http.Handler). The package includes handlers for logging in standardised formats, compressing HTTP responses, validating content types and other useful tools for manipulating requests and responses.
Package testify is a set of packages that provide many tools for testifying that your code will behave as you intend. testify contains the following packages: The assert package provides a comprehensive set of assertion functions that tie in to the Go testing system. The http package contains tools to make it easier to test http activity using the Go testing system. The mock package provides a system by which it is possible to mock your objects and verify calls are happening as expected. The suite package provides a basic structure for using structs as testing suites, and methods on those structs as tests. It includes setup/teardown functionality in the way of interfaces.
Package oauth2clientauthextension implements `cauth.Client` This extension provides OAuth2 Client Credentials flow authenticator for HTTP and gRPC based exporters. The extension fetches and refreshes the token after expiry For further details about OAuth2 Client Credentials flow refer https://datatracker.ietf.org/doc/html/rfc6749#section-4.4
Package httprequest provides functionality for unmarshaling HTTP request parameters into a struct type. Please note that the API is not considered stable at this point and may be changed in a backwardly incompatible manner at any time.
Package chi is a small, idiomatic and composable router for building HTTP services. chi requires Go 1.10 or newer. Example: See github.com/go-chi/chi/_examples/ for more in-depth examples. URL patterns allow for easy matching of path components in HTTP requests. The matching components can then be accessed using chi.URLParam(). All patterns must begin with a slash. A simple named placeholder {name} matches any sequence of characters up to the next / or the end of the URL. Trailing slashes on paths must be handled explicitly. A placeholder with a name followed by a colon allows a regular expression match, for example {number:\\d+}. The regular expression syntax is Go's normal regexp RE2 syntax, except that regular expressions including { or } are not supported, and / will never be matched. An anonymous regexp pattern is allowed, using an empty string before the colon in the placeholder, such as {:\\d+} The special placeholder of asterisk matches the rest of the requested URL. Any trailing characters in the pattern are ignored. This is the only placeholder which will match / characters. Examples: