package bbolt implements a low-level key/value store in pure Go. It supports fully serializable transactions, ACID semantics, and lock-free MVCC with multiple readers and a single writer. Bolt can be used for projects that want a simple data store without the need to add large dependencies such as Postgres or MySQL. Bolt is a single-level, zero-copy, B+tree data store. This means that Bolt is optimized for fast read access and does not require recovery in the event of a system crash. Transactions which have not finished committing will simply be rolled back in the event of a crash. The design of Bolt is based on Howard Chu's LMDB database project. Bolt currently works on Windows, Mac OS X, and Linux. There are only a few types in Bolt: DB, Bucket, Tx, and Cursor. The DB is a collection of buckets and is represented by a single file on disk. A bucket is a collection of unique keys that are associated with values. Transactions provide either read-only or read-write access to the database. Read-only transactions can retrieve key/value pairs and can use Cursors to iterate over the dataset sequentially. Read-write transactions can create and delete buckets and can insert and remove keys. Only one read-write transaction is allowed at a time. The database uses a read-only, memory-mapped data file to ensure that applications cannot corrupt the database, however, this means that keys and values returned from Bolt cannot be changed. Writing to a read-only byte slice will cause Go to panic. Keys and values retrieved from the database are only valid for the life of the transaction. When used outside the transaction, these byte slices can point to different data or can point to invalid memory which will cause a panic.
package bbolt implements a low-level key/value store in pure Go. It supports fully serializable transactions, ACID semantics, and lock-free MVCC with multiple readers and a single writer. Bolt can be used for projects that want a simple data store without the need to add large dependencies such as Postgres or MySQL. Bolt is a single-level, zero-copy, B+tree data store. This means that Bolt is optimized for fast read access and does not require recovery in the event of a system crash. Transactions which have not finished committing will simply be rolled back in the event of a crash. The design of Bolt is based on Howard Chu's LMDB database project. Bolt currently works on Windows, Mac OS X, and Linux. There are only a few types in Bolt: DB, Bucket, Tx, and Cursor. The DB is a collection of buckets and is represented by a single file on disk. A bucket is a collection of unique keys that are associated with values. Transactions provide either read-only or read-write access to the database. Read-only transactions can retrieve key/value pairs and can use Cursors to iterate over the dataset sequentially. Read-write transactions can create and delete buckets and can insert and remove keys. Only one read-write transaction is allowed at a time. The database uses a read-only, memory-mapped data file to ensure that applications cannot corrupt the database, however, this means that keys and values returned from Bolt cannot be changed. Writing to a read-only byte slice will cause Go to panic. Keys and values retrieved from the database are only valid for the life of the transaction. When used outside the transaction, these byte slices can point to different data or can point to invalid memory which will cause a panic.
Package ssh wraps the crypto/ssh package with a higher-level API for building SSH servers. The goal of the API was to make it as simple as using net/http, so the API is very similar. You should be able to build any SSH server using only this package, which wraps relevant types and some functions from crypto/ssh. However, you still need to use crypto/ssh for building SSH clients. ListenAndServe starts an SSH server with a given address, handler, and options. The handler is usually nil, which means to use DefaultHandler. Handle sets DefaultHandler: If you don't specify a host key, it will generate one every time. This is convenient except you'll have to deal with clients being confused that the host key is different. It's a better idea to generate or point to an existing key on your system: Although all options have functional option helpers, another way to control the server's behavior is by creating a custom Server: This package automatically handles basic SSH requests like setting environment variables, requesting PTY, and changing window size. These requests are processed, responded to, and any relevant state is updated. This state is then exposed to you via the Session interface. The one big feature missing from the Session abstraction is signals. This was started, but not completed. Pull Requests welcome!
Package buffalo is a Go web development eco-system, designed to make your life easier. Buffalo helps you to generate a web project that already has everything from front-end (JavaScript, SCSS, etc.) to back-end (database, routing, etc.) already hooked up and ready to run. From there it provides easy APIs to build your web application quickly in Go. Buffalo **isn't just a framework**, it's a holistic web development environment and project structure that **lets developers get straight to the business** of, well, building their business.
Copyright 2018 Twitch Interactive, Inc. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with the License. A copy of the License is located at or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Package twirp provides core types used in generated Twirp servers and client. Twirp services handle errors using the `twirp.Error` interface. For example, a server method may return an InvalidArgumentError: And the same twirp.Error is returned by the client, for example: Clients may also return Internal errors if something failed on the system: the server, the network, or the client itself (i.e. failure parsing response). Copyright 2018 Twitch Interactive, Inc. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with the License. A copy of the License is located at or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Copyright 2018 Twitch Interactive, Inc. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with the License. A copy of the License is located at or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
Package robotgo Go native cross-platform system automation. Please make sure Golang, GCC is installed correctly before installing RobotGo; See Requirements: Installation: With Go module support (Go 1.11+), just import: Otherwise, to install the robotgo package, run the command: +bulid linux,next +bulid windows,next
Package xid is a globally unique id generator suited for web scale Xid is using Mongo Object ID algorithm to generate globally unique ids: https://docs.mongodb.org/manual/reference/object-id/ The binary representation of the id is compatible with Mongo 12 bytes Object IDs. The string representation is using base32 hex (w/o padding) for better space efficiency when stored in that form (20 bytes). The hex variant of base32 is used to retain the sortable property of the id. Xid doesn't use base64 because case sensitivity and the 2 non alphanum chars may be an issue when transported as a string between various systems. Base36 wasn't retained either because 1/ it's not standard 2/ the resulting size is not predictable (not bit aligned) and 3/ it would not remain sortable. To validate a base32 `xid`, expect a 20 chars long, all lowercase sequence of `a` to `v` letters and `0` to `9` numbers (`[0-9a-v]{20}`). UUID is 16 bytes (128 bits), snowflake is 8 bytes (64 bits), xid stands in between with 12 bytes with a more compact string representation ready for the web and no required configuration or central generation server. Features: Best used with xlog's RequestIDHandler (https://godoc.org/github.com/rs/xlog#RequestIDHandler). References:
Package route53 provides the API client, operations, and parameter types for Amazon Route 53. Amazon Route 53 is a highly available and scalable Domain Name System (DNS) web service. You can use Route 53 to: For more information, see How domain registration works. For more information, see How internet traffic is routed to your website or web application. For more information, see How Route 53 checks the health of your resources.
Package testify is a set of packages that provide many tools for testifying that your code will behave as you intend. testify contains the following packages: The assert package provides a comprehensive set of assertion functions that tie in to the Go testing system. The http package contains tools to make it easier to test http activity using the Go testing system. The mock package provides a system by which it is possible to mock your objects and verify calls are happening as expected. The suite package provides a basic structure for using structs as testing suites, and methods on those structs as tests. It includes setup/teardown functionality in the way of interfaces.
Package kms provides the API client, operations, and parameter types for AWS Key Management Service. Key Management Service (KMS) is an encryption and key management web service. This guide describes the KMS operations that you can call programmatically. For general information about KMS, see the Key Management Service Developer Guide. KMS has replaced the term customer master key (CMK) with KMS key and KMS key. The concept has not changed. To prevent breaking changes, KMS is keeping some variations of this term. Amazon Web Services provides SDKs that consist of libraries and sample code for various programming languages and platforms (Java, Ruby, .Net, macOS, Android, etc.). The SDKs provide a convenient way to create programmatic access to KMS and other Amazon Web Services services. For example, the SDKs take care of tasks such as signing requests (see below), managing errors, and retrying requests automatically. For more information about the Amazon Web Services SDKs, including how to download and install them, see Tools for Amazon Web Services. We recommend that you use the Amazon Web Services SDKs to make programmatic API calls to KMS. If you need to use FIPS 140-2 validated cryptographic modules when communicating with Amazon Web Services, use the FIPS endpoint in your preferred Amazon Web Services Region. For more information about the available FIPS endpoints, see Service endpointsin the Key Management Service topic of the Amazon Web Services General Reference. All KMS API calls must be signed and be transmitted using Transport Layer Security (TLS). KMS recommends you always use the latest supported TLS version. Clients must also support cipher suites with Perfect Forward Secrecy (PFS) such as Ephemeral Diffie-Hellman (DHE) or Elliptic Curve Ephemeral Diffie-Hellman (ECDHE). Most modern systems such as Java 7 and later support these modes. Requests must be signed using an access key ID and a secret access key. We strongly recommend that you do not use your Amazon Web Services account root access key ID and secret access key for everyday work. You can use the access key ID and secret access key for an IAM user or you can use the Security Token Service (STS) to generate temporary security credentials and use those to sign requests. All KMS requests must be signed with Signature Version 4. KMS supports CloudTrail, a service that logs Amazon Web Services API calls and related events for your Amazon Web Services account and delivers them to an Amazon S3 bucket that you specify. By using the information collected by CloudTrail, you can determine what requests were made to KMS, who made the request, when it was made, and so on. To learn more about CloudTrail, including how to turn it on and find your log files, see the CloudTrail User Guide. For more information about credentials and request signing, see the following: Amazon Web Services Security Credentials Temporary Security Credentials Signature Version 4 Signing Process Of the API operations discussed in this guide, the following will prove the most useful for most applications. You will likely perform operations other than these, such as creating keys and assigning policies, by using the console.
Package contains a program that generates code to register a directory and its contents as zip data for statik file system.
Package cloudwatch provides the API client, operations, and parameter types for Amazon CloudWatch. Amazon CloudWatch monitors your Amazon Web Services (Amazon Web Services) resources and the applications you run on Amazon Web Services in real time. You can use CloudWatch to collect and track metrics, which are the variables you want to measure for your resources and applications. CloudWatch alarms send notifications or automatically change the resources you are monitoring based on rules that you define. For example, you can monitor the CPU usage and disk reads and writes of your Amazon EC2 instances. Then, use this data to determine whether you should launch additional instances to handle increased load. You can also use this data to stop under-used instances to save money. In addition to monitoring the built-in metrics that come with Amazon Web Services, you can monitor your own custom metrics. With CloudWatch, you gain system-wide visibility into resource utilization, application performance, and operational health.
Readline is a pure go implementation for GNU-Readline kind library. example: Package terminal provides support functions for dealing with terminals, as commonly found on UNIX systems. Putting a terminal into raw mode is the most common requirement:
Package ssm provides the API client, operations, and parameter types for Amazon Simple Systems Manager (SSM). Amazon Web Services Systems Manager is the operations hub for your Amazon Web Services applications and resources and a secure end-to-end management solution for hybrid cloud environments that enables safe and secure operations at scale. This reference is intended to be used with the Amazon Web Services Systems Manager User Guide. To get started, see Setting up Amazon Web Services Systems Manager. Related resources For information about each of the capabilities that comprise Systems Manager, see Systems Manager capabilitiesin the Amazon Web Services Systems Manager User Guide. For details about predefined runbooks for Automation, a capability of Amazon Web Services Systems Manager, see the Systems Manager Automation runbook reference. For information about AppConfig, a capability of Systems Manager, see the AppConfig User Guide and the AppConfig API Reference. For information about Incident Manager, a capability of Systems Manager, see the Systems Manager Incident Manager User Guideand the Systems Manager Incident Manager API Reference.
Package testify is a set of packages that provide many tools for testifying that your code will behave as you intend. testify contains the following packages: The assert package provides a comprehensive set of assertion functions that tie in to the Go testing system. The http package contains tools to make it easier to test http activity using the Go testing system. The mock package provides a system by which it is possible to mock your objects and verify calls are happening as expected. The suite package provides a basic structure for using structs as testing suites, and methods on those structs as tests. It includes setup/teardown functionality in the way of interfaces.
Package grpc implements an RPC system called gRPC. See grpc.io for more information about gRPC.
Package cloudwatchlogs provides the API client, operations, and parameter types for Amazon CloudWatch Logs. You can use Amazon CloudWatch Logs to monitor, store, and access your log files from EC2 instances, CloudTrail, and other sources. You can then retrieve the associated log data from CloudWatch Logs using the CloudWatch console. Alternatively, you can use CloudWatch Logs commands in the Amazon Web Services CLI, CloudWatch Logs API, or CloudWatch Logs SDK. You can use CloudWatch Logs to: Monitor logs from EC2 instances in real time: You can use CloudWatch Logs to monitor applications and systems using log data. For example, CloudWatch Logs can track the number of errors that occur in your application logs. Then, it can send you a notification whenever the rate of errors exceeds a threshold that you specify. CloudWatch Logs uses your log data for monitoring so no code changes are required. For example, you can monitor application logs for specific literal terms (such as "NullReferenceException"). You can also count the number of occurrences of a literal term at a particular position in log data (such as "404" status codes in an Apache access log). When the term you are searching for is found, CloudWatch Logs reports the data to a CloudWatch metric that you specify. Monitor CloudTrail logged events: You can create alarms in CloudWatch and receive notifications of particular API activity as captured by CloudTrail. You can use the notification to perform troubleshooting. Archive log data: You can use CloudWatch Logs to store your log data in highly durable storage. You can change the log retention setting so that any log events earlier than this setting are automatically deleted. The CloudWatch Logs agent helps to quickly send both rotated and non-rotated log data off of a host and into the log service. You can then access the raw log data when you need it.
Package toml is a TOML parser and manipulation library. This version supports the specification as described in https://github.com/toml-lang/toml/blob/master/versions/en/toml-v0.5.0.md Go-toml can marshal and unmarshal TOML documents from and to data structures. Go-toml can operate on a TOML document as a tree. Use one of the Load* functions to parse TOML data and obtain a Tree instance, then one of its methods to manipulate the tree. The package github.com/pelletier/go-toml/query implements a system similar to JSONPath to quickly retrieve elements of a TOML document using a single expression. See the package documentation for more information. Package civil implements types for civil time, a time-zone-independent representation of time that follows the rules of the proleptic Gregorian calendar with exactly 24-hour days, 60-minute hours, and 60-second minutes. Because they lack location information, these types do not represent unique moments or intervals of time. Use time.Time for that purpose.
Package lambda provides the API client, operations, and parameter types for AWS Lambda. Lambda is a compute service that lets you run code without provisioning or managing servers. Lambda runs your code on a high-availability compute infrastructure and performs all of the administration of the compute resources, including server and operating system maintenance, capacity provisioning and automatic scaling, code monitoring and logging. With Lambda, you can run code for virtually any type of application or backend service. For more information about the Lambda service, see What is Lambdain the Lambda Developer Guide. The Lambda API Reference provides information about each of the API methods, including details about the parameters in each API request and response. You can use Software Development Kits (SDKs), Integrated Development Environment (IDE) Toolkits, and command line tools to access the API. For installation instructions, see Tools for Amazon Web Services. For a list of Region-specific endpoints that Lambda supports, see Lambda endpoints and quotas in the Amazon Web Services General Reference.. When making the API calls, you will need to authenticate your request by providing a signature. Lambda supports signature version 4. For more information, see Signature Version 4 signing processin the Amazon Web Services General Reference.. Because Amazon Web Services SDKs use the CA certificates from your computer, changes to the certificates on the Amazon Web Services servers can cause connection failures when you attempt to use an SDK. You can prevent these failures by keeping your computer's CA certificates and operating system up-to-date. If you encounter this issue in a corporate environment and do not manage your own computer, you might need to ask an administrator to assist with the update process. The following list shows minimum operating system and Java versions: Microsoft Windows versions that have updates from January 2005 or later installed contain at least one of the required CAs in their trust list. Mac OS X 10.4 with Java for Mac OS X 10.4 Release 5 (February 2007), Mac OS X 10.5 (October 2007), and later versions contain at least one of the required CAs in their trust list. Red Hat Enterprise Linux 5 (March 2007), 6, and 7 and CentOS 5, 6, and 7 all contain at least one of the required CAs in their default trusted CA list. Java 1.4.2_12 (May 2006), 5 Update 2 (March 2005), and all later versions, including Java 6 (December 2006), 7, and 8, contain at least one of the required CAs in their default trusted CA list. When accessing the Lambda management console or Lambda API endpoints, whether through browsers or programmatically, you will need to ensure your client machines support any of the following CAs: Amazon Root CA 1 Starfield Services Root Certificate Authority - G2 Starfield Class 2 Certification Authority Root certificates from the first two authorities are available from Amazon trust services, but keeping your computer up-to-date is the more straightforward solution. To learn more about ACM-provided certificates, see Amazon Web Services Certificate Manager FAQs.
Package fsnotify implements file system notification.
This is a repository containing Go bindings for writing FUSE file systems. Go to https://godoc.org/github.com/hanwen/go-fuse/fs for the in-depth documentation for this library. Older, deprecated APIs are available at https://godoc.org/github.com/hanwen/go-fuse/fuse/pathfs and https://godoc.org/github.com/hanwen/go-fuse/fuse/nodefs.
Package eks provides the API client, operations, and parameter types for Amazon Elastic Kubernetes Service. Amazon Elastic Kubernetes Service (Amazon EKS) is a managed service that makes it easy for you to run Kubernetes on Amazon Web Services without needing to setup or maintain your own Kubernetes control plane. Kubernetes is an open-source system for automating the deployment, scaling, and management of containerized applications. Amazon EKS runs up-to-date versions of the open-source Kubernetes software, so you can use all the existing plugins and tooling from the Kubernetes community. Applications running on Amazon EKS are fully compatible with applications running on any standard Kubernetes environment, whether running in on-premises data centers or public clouds. This means that you can easily migrate any standard Kubernetes application to Amazon EKS without any code modification required.
ps provides an API for finding and listing processes in a platform-agnostic way. NOTE: If you're reading these docs online via GoDocs or some other system, you might only see the Unix docs. This project makes heavy use of platform-specific implementations. We recommend reading the source if you are interested.
Package log implements logging for the datadog agent. It wraps seelog, and supports logging to multiple destinations, buffering messages logged before setup, and scrubbing secrets from log messages. This module is exported and can be used outside of the datadog-agent repository, but is not designed as a general-purpose logging system. Its API may change incompatibly.
This is an example of how to extend a Go application with an addition function defined in WebAssembly. Since addWasm was compiled with TinyGo's `wasi` target, we need to configure WASI host imports. A complete project that does the same as this is available here: https://github.com/tetratelabs/wazero/tree/main/examples/basic This is a basic example of using the file system compilation cache via wazero.NewCompilationCacheWithDir. The main goal is to show how it is configured. This example shows how to configure an embed.FS. This is a basic example of retrieving custom sections using RuntimeConfig.WithCustomSections.
Package fuse enables writing FUSE file systems on Linux and FreeBSD. There are two approaches to writing a FUSE file system. The first is to speak the low-level message protocol, reading from a Conn using ReadRequest and writing using the various Respond methods. This approach is closest to the actual interaction with the kernel and can be the simplest one in contexts such as protocol translators. Servers of synthesized file systems tend to share common bookkeeping abstracted away by the second approach, which is to call fs.Serve to serve the FUSE protocol using an implementation of the service methods in the interfaces FS* (file system), Node* (file or directory), and Handle* (opened file or directory). There are a daunting number of such methods that can be written, but few are required. The specific methods are described in the documentation for those interfaces. The examples/hellofs subdirectory contains a simple illustration of the fs.Serve approach. The required and optional methods for the FS, Node, and Handle interfaces have the general form where Op is the name of a FUSE operation. Op reads request parameters from req and writes results to resp. An operation whose only result is the error result omits the resp parameter. Multiple goroutines may call service methods simultaneously; the methods being called are responsible for appropriate synchronization. The operation must not hold on to the request or response, including any []byte fields such as WriteRequest.Data or SetxattrRequest.Xattr. Operations can return errors. The FUSE interface can only communicate POSIX errno error numbers to file system clients, the message is not visible to file system clients. The returned error can implement ErrorNumber to control the errno returned. Without ErrorNumber, a generic errno (EIO) is returned. Error messages will be visible in the debug log as part of the response. In some file systems, some operations may take an undetermined amount of time. For example, a Read waiting for a network message or a matching Write might wait indefinitely. If the request is cancelled and no longer needed, the context will be cancelled. Blocking operations should select on a receive from ctx.Done() and attempt to abort the operation early if the receive succeeds (meaning the channel is closed). To indicate that the operation failed because it was aborted, return syscall.EINTR. If an operation does not block for an indefinite amount of time, supporting cancellation is not necessary. All requests types embed a Header, meaning that the method can inspect req.Pid, req.Uid, and req.Gid as necessary to implement permission checking. The kernel FUSE layer normally prevents other users from accessing the FUSE file system (to change this, see AllowOther), but does not enforce access modes (to change this, see DefaultPermissions). Behavior and metadata of the mounted file system can be changed by passing MountOption values to Mount.
Package ecs provides the API client, operations, and parameter types for Amazon EC2 Container Service. Amazon Elastic Container Service (Amazon ECS) is a highly scalable, fast, container management service. It makes it easy to run, stop, and manage Docker containers. You can host your cluster on a serverless infrastructure that's managed by Amazon ECS by launching your services or tasks on Fargate. For more control, you can host your tasks on a cluster of Amazon Elastic Compute Cloud (Amazon EC2) or External (on-premises) instances that you manage. Amazon ECS makes it easy to launch and stop container-based applications with simple API calls. This makes it easy to get the state of your cluster from a centralized service, and gives you access to many familiar Amazon EC2 features. You can use Amazon ECS to schedule the placement of containers across your cluster based on your resource needs, isolation policies, and availability requirements. With Amazon ECS, you don't need to operate your own cluster management and configuration management systems. You also don't need to worry about scaling your management infrastructure.
Package procfs provides functions to retrieve system, kernel and process metrics from the pseudo-filesystem proc. Example:
Package logr provides a small adapter required to use logr in logging gRPC middlewares. Please see examples for examples of use.
Package dbus implements bindings to the D-Bus message bus system. To use the message bus API, you first need to connect to a bus (usually the session or system bus). The acquired connection then can be used to call methods on remote objects and emit or receive signals. Using the Export method, you can arrange D-Bus methods calls to be directly translated to method calls on a Go value. For outgoing messages, Go types are automatically converted to the corresponding D-Bus types. See the official specification at https://dbus.freedesktop.org/doc/dbus-specification.html#type-system for more information on the D-Bus type system. The following types are directly encoded as their respective D-Bus equivalents: Slices and arrays encode as ARRAYs of their element type. Maps encode as DICTs, provided that their key type can be used as a key for a DICT. Structs other than Variant and Signature encode as a STRUCT containing their exported fields in order. Fields whose tags contain `dbus:"-"` and unexported fields will be skipped. Pointers encode as the value they're pointed to. Types convertible to one of the base types above will be mapped as the base type. Trying to encode any other type or a slice, map or struct containing an unsupported type will result in an InvalidTypeError. For incoming messages, the inverse of these rules are used, with the exception of STRUCTs. Incoming STRUCTS are represented as a slice of empty interfaces containing the struct fields in the correct order. The Store function can be used to convert such values to Go structs. Handling Unix file descriptors deserves special mention. To use them, you should first check that they are supported on a connection by calling SupportsUnixFDs. If it returns true, all method of Connection will translate messages containing UnixFD's to messages that are accompanied by the given file descriptors with the UnixFD values being substituted by the correct indices. Similarly, the indices of incoming messages are automatically resolved. It shouldn't be necessary to use UnixFDIndex.
Package miniredis is a pure Go Redis test server, for use in Go unittests. There are no dependencies on system binaries, and every server you start will be empty. import "github.com/alicebob/miniredis/v2" Start a server with `s := miniredis.RunT(t)`, it'll be shutdown via a t.Cleanup(). Or do everything manual: `s, err := miniredis.Run(); defer s.Close()` Point your Redis client to `s.Addr()` or `s.Host(), s.Port()`. Set keys directly via s.Set(...) and similar commands, or use a Redis client. For direct use you can select a Redis database with either `s.Select(12); s.Get("foo")` or `s.DB(12).Get("foo")`.
Package efs provides the API client, operations, and parameter types for Amazon Elastic File System. Amazon Elastic File System (Amazon EFS) provides simple, scalable file storage for use with Amazon EC2 Linux and Mac instances in the Amazon Web Services Cloud. With Amazon EFS, storage capacity is elastic, growing and shrinking automatically as you add and remove files, so that your applications have the storage they need, when they need it. For more information, see the Amazon Elastic File System API Referenceand the Amazon Elastic File System User Guide.
Package dbus implements bindings to the D-Bus message bus system. To use the message bus API, you first need to connect to a bus (usually the session or system bus). The acquired connection then can be used to call methods on remote objects and emit or receive signals. Using the Export method, you can arrange D-Bus methods calls to be directly translated to method calls on a Go value. For outgoing messages, Go types are automatically converted to the corresponding D-Bus types. The following types are directly encoded as their respective D-Bus equivalents: Slices and arrays encode as ARRAYs of their element type. Maps encode as DICTs, provided that their key type can be used as a key for a DICT. Structs other than Variant and Signature encode as a STRUCT containing their exported fields. Fields whose tags contain `dbus:"-"` and unexported fields will be skipped. Pointers encode as the value they're pointed to. Types convertible to one of the base types above will be mapped as the base type. Trying to encode any other type or a slice, map or struct containing an unsupported type will result in an InvalidTypeError. For incoming messages, the inverse of these rules are used, with the exception of STRUCTs. Incoming STRUCTS are represented as a slice of empty interfaces containing the struct fields in the correct order. The Store function can be used to convert such values to Go structs. Handling Unix file descriptors deserves special mention. To use them, you should first check that they are supported on a connection by calling SupportsUnixFDs. If it returns true, all method of Connection will translate messages containing UnixFD's to messages that are accompanied by the given file descriptors with the UnixFD values being substituted by the correct indices. Similarily, the indices of incoming messages are automatically resolved. It shouldn't be necessary to use UnixFDIndex.
Package script aims to make it easy to write shell-type scripts in Go, for general system administration purposes: reading files, counting lines, matching strings, and so on.
A Go client for the NATS messaging system (https://nats.io). A Go client for the NATS messaging system (https://nats.io).
This package provides utilities for efficiently performing Win32 IO operations in Go. Currently, this package is provides support for genreal IO and management of This code is similar to Go's net package, and uses IO completion ports to avoid blocking IO on system threads, allowing Go to reuse the thread to schedule other goroutines. This limits support to Windows Vista and newer operating systems. Additionally, this package provides support for:
Package prometheus provides a standalone interceptor for metrics. It's next iteration of deprecated https://github.com/grpc-ecosystem/go-grpc-prometheus. See https://github.com/grpc-ecosystem/go-grpc-middleware/tree/main/examples for example.
Package dragonboat is a multi-group Raft implementation. The NodeHost struct is the facade interface for all features provided by the dragonboat package. Each NodeHost instance usually runs on a separate host managing its CPU, storage and network resources. Each NodeHost can manage Raft nodes from many different Raft groups known as Raft clusters. Each Raft cluster is identified by its ClusterID and it usually consists of multiple nodes, each identified its NodeID value. Nodes from the same Raft cluster can be considered as replicas of the same data, they are suppose to be distributed on different NodeHost instances across the network, this brings fault tolerance to machine and network failures as application data stored in the Raft cluster will be available as long as the majority of its managing NodeHost instances (i.e. its underlying hosts) are available. User applications can leverage the power of the Raft protocol implemented in dragonboat by implementing the IStateMachine or IOnDiskStateMachine component, as defined in github.com/lni/dragonboat/v3/statemachine. Known as user state machines, each IStateMachine and IOnDiskStateMachine instance is in charge of updating, querying and snapshotting application data with minimum exposure to the complexity of the Raft protocol implementation. User applications can use NodeHost's APIs to update the state of their IStateMachine or IOnDiskStateMachine instances, this is called making proposals. Once accepted by the majority nodes of a Raft cluster, the proposal is considered as committed and it will be applied on all member nodes of the Raft cluster. Applications can also make linearizable reads to query the state of the IStateMachine or IOnDiskStateMachine instances. Dragonboat employs the ReadIndex protocol invented by Diego Ongaro for fast linearizable reads. Dragonboat guarantees the linearizability of your I/O when interacting with the IStateMachine or IOnDiskStateMachine instances. In plain English, writes (via making proposal) to your Raft cluster appears to be instantaneous, once a write is completed, all later reads (linearizable read using the ReadIndex protocol as implemented and provided in dragonboat) should return the value of that write or a later write. Once a value is returned by a linearizable read, all later reads should return the same value or the result of a later write. To strictly provide such guarantee, we need to implement the at-most-once semantic required by linearizability. For a client, when it retries the proposal that failed to complete before its deadline during the previous attempt, it has the risk to have the same proposal committed and applied twice into the user state machine. Dragonboat prevents this by implementing the client session concept described in Diego Ongaro's PhD thesis. Arbitrary number of Raft clusters can be launched across the network simultaneously to aggregate distributed processing and storage capacities. Users can also make membership change requests to add or remove nodes from any interested Raft cluster. NodeHost APIs for making the above mentioned requests can be loosely classified into two categories, synchronous and asynchronous APIs. Synchronous APIs will not return until the completion of the requested operation. Their method names all start with Sync*. The asynchronous counterparts of such synchronous APIs, on the other hand, usually return immediately. This allows users to concurrently initiate multiple such asynchronous operations to save the total amount of time required to complete all of them. Dragonboat is a feature complete Multi-Group Raft implementation - snapshotting, membership change, leadership transfer, non-voting members and disk based state machine are all provided. Dragonboat is also extensively optimized. The Raft protocol implementation is fully pipelined, meaning proposals can start before the completion of previous proposals. This is critical for system throughput in high latency environment. Dragonboat is also fully batched, internal operations are batched whenever possible to maximize the overall throughput.