Package gousb provides an low-level interface to attached USB devices. A Context manages all resources necessary for communicating with USB devices. Through the Context users can iterate over available USB devices. The USB standard defines a mechanism of discovering USB device functionality through descriptors. After the device is attached and initialized by the host stack, it's possible to retrieve its descriptor (the device descriptor). It contains elements such as product and vendor IDs, bus number and device number (address) on the bus. In gousb, the Device struct represents a USB device. The Device struct’s Desc field contains all known information about the device. Among other information in the device descriptor is a list of configuration descriptors, accessible through Device.Desc.Configs. The USB standard allows one physical USB device to switch between different sets of behaviors, or working modes, by selecting one of the offered configs (each device has at least one). This allows the same device to sometimes present itself as e.g. a 3G modem, and sometimes as a flash drive with the drivers for that 3G modem. Configs are mutually exclusive, each device can have only one active config at a time. Switching the active config performs a light-weight device reset. Each config in the device descriptor has a unique identification number. In gousb a device config needs to be selected through Device.Config(num). It returns a Config struct that represents the device in this particular configuration. The configuration descriptor is accessible through Config.Desc. A config descriptor determines the list of available USB interfaces on the device. Each interface is a virtual device within the physical USB device and its active config. There can be many interfaces active concurrently. Interfaces are enumerated sequentially starting from zero. Additionally, each interface comes with a number of alternate settings for the interface, which are somewhat similar to device configs, but on the interface level. Each interface can have only a single alternate setting active at any time. Alternate settings are enumerated sequentially starting from zero. In gousb an interface and its alternate setting can be selected through Config.Interface(num, altNum). The Interface struct is the representation of the claimed interface with a particular alternate setting. The descriptor of the interface is available through Interface.Setting. An interface with a particular alternate setting defines up to 30 data endpoints, each identified by a unique address. The endpoint address is a combination of endpoint number (1..15) and endpoint directionality (IN/OUT). IN endpoints have addresses 0x81..0x8f, while OUT endpoints 0x01..0x0f. An endpoint can be considered similar to a UDP/IP port, except the data transfers are unidirectional. Endpoints are represented by the Endpoint struct, and all defined endpoints can be obtained through the Endpoints field of the Interface.Setting. Each endpoint descriptor (EndpointDesc) defined in the interface's endpoint map includes information about the type of the endpoint: - endpoint address - endpoint number - direction: IN (device-to-host) or OUT (host-to-device) - transfer type: USB standard defines a few distinct data transfer types: --- bulk - high throughput, but no guaranteed bandwidth and no latency guarantees, --- isochronous - medium throughput, guaranteed bandwidth, some latency guarantees, --- interrupt - low throughput, high latency guarantees. The endpoint descriptor determines the type of the transfer that will be used. - maximum packet size: maximum number of bytes that can be sent or received by the device in a single USB transaction. and a few other less frequently used pieces of endpoint information. An IN Endpoint can be opened for reading through Interface.InEndpoint(epNum), while an OUT Endpoint can be opened for writing through Interface.OutEndpoint(epNum). An InEndpoint implements the io.Reader interface, an OutEndpoint implements the io.Writer interface. Both Reads and Writes will accept larger slices of data than the endpoint's maximum packet size, the transfer will be split into smaller USB transactions as needed. But using Read/Write size equal to an integer multiple of maximum packet size helps with improving the transfer performance. Apart from 15 possible data endpoints, each USB device also has a control endpoint. The control endpoint is present regardless of the current device config, claimed interfaces and their alternate settings. It makes a lot of sense, as the control endpoint is actually used, among others, to issue commands to switch the active config or select an alternate setting for an interface. Control commands are also often used to control the behavior of the device. There is no single standard for control commands though, and many devices implement their custom control command schema. Control commands can be issued through Device.Control(). For more information about USB protocol and handling USB devices, see the excellent "USB in a nutshell" guide: http://www.beyondlogic.org/usbnutshell/ This example demostrates the full API for accessing endpoints. It opens a device with a known VID/PID, switches the device to configuration #2, in that configuration it opens (claims) interface #3 with alternate setting #0. Within that interface setting it opens an IN endpoint number 6 and an OUT endpoint number 5, then starts copying data between them, This examples demonstrates the use of a few convenience functions that can be used in simple situations and with simple devices. It opens a device with a given VID/PID, claims the default interface (use the same config as currently active, interface 0, alternate setting 0) and tries to write 5 bytes of data to endpoint number 7.
Package ql implements a pure Go embedded SQL database engine. QL is a member of the SQL family of languages. It is less complex and less powerful than SQL (whichever specification SQL is considered to be). 2018-08-02: Release v1.2.0 adds initial support for Go modules. 2017-01-10: Release v1.1.0 fixes some bugs and adds a configurable WAL headroom. 2016-07-29: Release v1.0.6 enables alternatively using = instead of == for equality operation. 2016-07-11: Release v1.0.5 undoes vendoring of lldb. QL now uses stable lldb (github.com/cznic/lldb). 2016-07-06: Release v1.0.4 fixes a panic when closing the WAL file. 2016-04-03: Release v1.0.3 fixes a data race. 2016-03-23: Release v1.0.2 vendors github.com/cznic/exp/lldb and github.com/camlistore/go4/lock. 2016-03-17: Release v1.0.1 adjusts for latest goyacc. Parser error messages are improved and changed, but their exact form is not considered a API change. 2016-03-05: The current version has been tagged v1.0.0. 2015-06-15: To improve compatibility with other SQL implementations, the count built-in aggregate function now accepts * as its argument. 2015-05-29: The execution planner was rewritten from scratch. It should use indices in all places where they were used before plus in some additional situations. It is possible to investigate the plan using the newly added EXPLAIN statement. The QL tool is handy for such analysis. If the planner would have used an index, but no such exists, the plan includes hints in form of copy/paste ready CREATE INDEX statements. The planner is still quite simple and a lot of work on it is yet ahead. You can help this process by filling an issue with a schema and query which fails to use an index or indices when it should, in your opinion. Bonus points for including output of `ql 'explain <query>'`. 2015-05-09: The grammar of the CREATE INDEX statement now accepts an expression list instead of a single expression, which was further limited to just a column name or the built-in id(). As a side effect, composite indices are now functional. However, the values in the expression-list style index are not yet used by other statements or the statement/query planner. The composite index is useful while having UNIQUE clause to check for semantically duplicate rows before they get added to the table or when such a row is mutated using the UPDATE statement and the expression-list style index tuple of the row is thus recomputed. 2015-05-02: The Schema field of table __Table now correctly reflects any column constraints and/or defaults. Also, the (*DB).Info method now has that information provided in new ColumInfo fields NotNull, Constraint and Default. 2015-04-20: Added support for {LEFT,RIGHT,FULL} [OUTER] JOIN. 2015-04-18: Column definitions can now have constraints and defaults. Details are discussed in the "Constraints and defaults" chapter below the CREATE TABLE statement documentation. 2015-03-06: New built-in functions formatFloat and formatInt. Thanks urandom! (https://github.com/urandom) 2015-02-16: IN predicate now accepts a SELECT statement. See the updated "Predicates" section. 2015-01-17: Logical operators || and && have now alternative spellings: OR and AND (case insensitive). AND was a keyword before, but OR is a new one. This can possibly break existing queries. For the record, it's a good idea to not use any name appearing in, for example, [7] in your queries as the list of QL's keywords may expand for gaining better compatibility with existing SQL "standards". 2015-01-12: ACID guarantees were tightened at the cost of performance in some cases. The write collecting window mechanism, a formerly used implementation detail, was removed. Inserting rows one by one in a transaction is now slow. I mean very slow. Try to avoid inserting single rows in a transaction. Instead, whenever possible, perform batch updates of tens to, say thousands of rows in a single transaction. See also: http://www.sqlite.org/faq.html#q19, the discussed synchronization principles involved are the same as for QL, modulo minor details. Note: A side effect is that closing a DB before exiting an application, both for the Go API and through database/sql driver, is no more required, strictly speaking. Beware that exiting an application while there is an open (uncommitted) transaction in progress means losing the transaction data. However, the DB will not become corrupted because of not closing it. Nor that was the case before, but formerly failing to close a DB could have resulted in losing the data of the last transaction. 2014-09-21: id() now optionally accepts a single argument - a table name. 2014-09-01: Added the DB.Flush() method and the LIKE pattern matching predicate. 2014-08-08: The built in functions max and min now accept also time values. Thanks opennota! (https://github.com/opennota) 2014-06-05: RecordSet interface extended by new methods FirstRow and Rows. 2014-06-02: Indices on id() are now used by SELECT statements. 2014-05-07: Introduction of Marshal, Schema, Unmarshal. 2014-04-15: Added optional IF NOT EXISTS clause to CREATE INDEX and optional IF EXISTS clause to DROP INDEX. 2014-04-12: The column Unique in the virtual table __Index was renamed to IsUnique because the old name is a keyword. Unfortunately, this is a breaking change, sorry. 2014-04-11: Introduction of LIMIT, OFFSET. 2014-04-10: Introduction of query rewriting. 2014-04-07: Introduction of indices. QL imports zappy[8], a block-based compressor, which speeds up its performance by using a C version of the compression/decompression algorithms. If a CGO-free (pure Go) version of QL, or an app using QL, is required, please include 'purego' in the -tags option of go {build,get,install}. For example: If zappy was installed before installing QL, it might be necessary to rebuild zappy first (or rebuild QL with all its dependencies using the -a option): The syntax is specified using Extended Backus-Naur Form (EBNF) Lower-case production names are used to identify lexical tokens. Non-terminals are in CamelCase. Lexical tokens are enclosed in double quotes "" or back quotes “. The form a … b represents the set of characters from a through b as alternatives. The horizontal ellipsis … is also used elsewhere in the spec to informally denote various enumerations or code snippets that are not further specified. QL source code is Unicode text encoded in UTF-8. The text is not canonicalized, so a single accented code point is distinct from the same character constructed from combining an accent and a letter; those are treated as two code points. For simplicity, this document will use the unqualified term character to refer to a Unicode code point in the source text. Each code point is distinct; for instance, upper and lower case letters are different characters. Implementation restriction: For compatibility with other tools, the parser may disallow the NUL character (U+0000) in the statement. Implementation restriction: A byte order mark is disallowed anywhere in QL statements. The following terms are used to denote specific character classes The underscore character _ (U+005F) is considered a letter. Lexical elements are comments, tokens, identifiers, keywords, operators and delimiters, integer, floating-point, imaginary, rune and string literals and QL parameters. Line comments start with the character sequence // or -- and stop at the end of the line. A line comment acts like a space. General comments start with the character sequence /* and continue through the character sequence */. A general comment acts like a space. Comments do not nest. Tokens form the vocabulary of QL. There are four classes: identifiers, keywords, operators and delimiters, and literals. White space, formed from spaces (U+0020), horizontal tabs (U+0009), carriage returns (U+000D), and newlines (U+000A), is ignored except as it separates tokens that would otherwise combine into a single token. The formal grammar uses semicolons ";" as separators of QL statements. A single QL statement or the last QL statement in a list of statements can have an optional semicolon terminator. (Actually a separator from the following empty statement.) Identifiers name entities such as tables or record set columns. An identifier is a sequence of one or more letters and digits. The first character in an identifier must be a letter. For example No identifiers are predeclared, however note that no keyword can be used as an identifier. Identifiers starting with two underscores are used for meta data virtual tables names. For forward compatibility, users should generally avoid using any identifiers starting with two underscores. For example The following keywords are reserved and may not be used as identifiers. Keywords are not case sensitive. The following character sequences represent operators, delimiters, and other special tokens Operators consisting of more than one character are referred to by names in the rest of the documentation An integer literal is a sequence of digits representing an integer constant. An optional prefix sets a non-decimal base: 0 for octal, 0x or 0X for hexadecimal. In hexadecimal literals, letters a-f and A-F represent values 10 through 15. For example A floating-point literal is a decimal representation of a floating-point constant. It has an integer part, a decimal point, a fractional part, and an exponent part. The integer and fractional part comprise decimal digits; the exponent part is an e or E followed by an optionally signed decimal exponent. One of the integer part or the fractional part may be elided; one of the decimal point or the exponent may be elided. For example An imaginary literal is a decimal representation of the imaginary part of a complex constant. It consists of a floating-point literal or decimal integer followed by the lower-case letter i. For example A rune literal represents a rune constant, an integer value identifying a Unicode code point. A rune literal is expressed as one or more characters enclosed in single quotes. Within the quotes, any character may appear except single quote and newline. A single quoted character represents the Unicode value of the character itself, while multi-character sequences beginning with a backslash encode values in various formats. The simplest form represents the single character within the quotes; since QL statements are Unicode characters encoded in UTF-8, multiple UTF-8-encoded bytes may represent a single integer value. For instance, the literal 'a' holds a single byte representing a literal a, Unicode U+0061, value 0x61, while 'ä' holds two bytes (0xc3 0xa4) representing a literal a-dieresis, U+00E4, value 0xe4. Several backslash escapes allow arbitrary values to be encoded as ASCII text. There are four ways to represent the integer value as a numeric constant: \x followed by exactly two hexadecimal digits; \u followed by exactly four hexadecimal digits; \U followed by exactly eight hexadecimal digits, and a plain backslash \ followed by exactly three octal digits. In each case the value of the literal is the value represented by the digits in the corresponding base. Although these representations all result in an integer, they have different valid ranges. Octal escapes must represent a value between 0 and 255 inclusive. Hexadecimal escapes satisfy this condition by construction. The escapes \u and \U represent Unicode code points so within them some values are illegal, in particular those above 0x10FFFF and surrogate halves. After a backslash, certain single-character escapes represent special values All other sequences starting with a backslash are illegal inside rune literals. For example A string literal represents a string constant obtained from concatenating a sequence of characters. There are two forms: raw string literals and interpreted string literals. Raw string literals are character sequences between back quotes “. Within the quotes, any character is legal except back quote. The value of a raw string literal is the string composed of the uninterpreted (implicitly UTF-8-encoded) characters between the quotes; in particular, backslashes have no special meaning and the string may contain newlines. Carriage returns inside raw string literals are discarded from the raw string value. Interpreted string literals are character sequences between double quotes "". The text between the quotes, which may not contain newlines, forms the value of the literal, with backslash escapes interpreted as they are in rune literals (except that \' is illegal and \" is legal), with the same restrictions. The three-digit octal (\nnn) and two-digit hexadecimal (\xnn) escapes represent individual bytes of the resulting string; all other escapes represent the (possibly multi-byte) UTF-8 encoding of individual characters. Thus inside a string literal \377 and \xFF represent a single byte of value 0xFF=255, while ÿ, \u00FF, \U000000FF and \xc3\xbf represent the two bytes 0xc3 0xbf of the UTF-8 encoding of character U+00FF. For example These examples all represent the same string If the statement source represents a character as two code points, such as a combining form involving an accent and a letter, the result will be an error if placed in a rune literal (it is not a single code point), and will appear as two code points if placed in a string literal. Literals are assigned their values from the respective text representation at "compile" (parse) time. QL parameters provide the same functionality as literals, but their value is assigned at execution time from an expression list passed to DB.Run or DB.Execute. Using '?' or '$' is completely equivalent. For example Keywords 'false' and 'true' (not case sensitive) represent the two possible constant values of type bool (also not case sensitive). Keyword 'NULL' (not case sensitive) represents an untyped constant which is assignable to any type. NULL is distinct from any other value of any type. A type determines the set of values and operations specific to values of that type. A type is specified by a type name. Named instances of the boolean, numeric, and string types are keywords. The names are not case sensitive. Note: The blob type is exchanged between the back end and the API as []byte. On 32 bit platforms this limits the size which the implementation can handle to 2G. A boolean type represents the set of Boolean truth values denoted by the predeclared constants true and false. The predeclared boolean type is bool. A duration type represents the elapsed time between two instants as an int64 nanosecond count. The representation limits the largest representable duration to approximately 290 years. A numeric type represents sets of integer or floating-point values. The predeclared architecture-independent numeric types are The value of an n-bit integer is n bits wide and represented using two's complement arithmetic. Conversions are required when different numeric types are mixed in an expression or assignment. A string type represents the set of string values. A string value is a (possibly empty) sequence of bytes. The case insensitive keyword for the string type is 'string'. The length of a string (its size in bytes) can be discovered using the built-in function len. A time type represents an instant in time with nanosecond precision. Each time has associated with it a location, consulted when computing the presentation form of the time. The following functions are implicitly declared An expression specifies the computation of a value by applying operators and functions to operands. Operands denote the elementary values in an expression. An operand may be a literal, a (possibly qualified) identifier denoting a constant or a function or a table/record set column, or a parenthesized expression. A qualified identifier is an identifier qualified with a table/record set name prefix. For example Primary expression are the operands for unary and binary expressions. For example A primary expression of the form denotes the element of a string indexed by x. Its type is byte. The value x is called the index. The following rules apply - The index x must be of integer type except bigint or duration; it is in range if 0 <= x < len(s), otherwise it is out of range. - A constant index must be non-negative and representable by a value of type int. - A constant index must be in range if the string a is a literal. - If x is out of range at run time, a run-time error occurs. - s[x] is the byte at index x and the type of s[x] is byte. If s is NULL or x is NULL then the result is NULL. Otherwise s[x] is illegal. For a string, the primary expression constructs a substring. The indices low and high select which elements appear in the result. The result has indices starting at 0 and length equal to high - low. For convenience, any of the indices may be omitted. A missing low index defaults to zero; a missing high index defaults to the length of the sliced operand The indices low and high are in range if 0 <= low <= high <= len(a), otherwise they are out of range. A constant index must be non-negative and representable by a value of type int. If both indices are constant, they must satisfy low <= high. If the indices are out of range at run time, a run-time error occurs. Integer values of type bigint or duration cannot be used as indices. If s is NULL the result is NULL. If low or high is not omitted and is NULL then the result is NULL. Given an identifier f denoting a predeclared function, calls f with arguments a1, a2, … an. Arguments are evaluated before the function is called. The type of the expression is the result type of f. In a function call, the function value and arguments are evaluated in the usual order. After they are evaluated, the parameters of the call are passed by value to the function and the called function begins execution. The return value of the function is passed by value when the function returns. Calling an undefined function causes a compile-time error. Operators combine operands into expressions. Comparisons are discussed elsewhere. For other binary operators, the operand types must be identical unless the operation involves shifts or untyped constants. For operations involving constants only, see the section on constant expressions. Except for shift operations, if one operand is an untyped constant and the other operand is not, the constant is converted to the type of the other operand. The right operand in a shift expression must have unsigned integer type or be an untyped constant that can be converted to unsigned integer type. If the left operand of a non-constant shift expression is an untyped constant, the type of the constant is what it would be if the shift expression were replaced by its left operand alone. Expressions of the form yield a boolean value true if expr2, a regular expression, matches expr1 (see also [6]). Both expression must be of type string. If any one of the expressions is NULL the result is NULL. Predicates are special form expressions having a boolean result type. Expressions of the form are equivalent, including NULL handling, to The types of involved expressions must be comparable as defined in "Comparison operators". Another form of the IN predicate creates the expression list from a result of a SelectStmt. The SelectStmt must select only one column. The produced expression list is resource limited by the memory available to the process. NULL values produced by the SelectStmt are ignored, but if all records of the SelectStmt are NULL the predicate yields NULL. The select statement is evaluated only once. If the type of expr is not the same as the type of the field returned by the SelectStmt then the set operation yields false. The type of the column returned by the SelectStmt must be one of the simple (non blob-like) types: Expressions of the form are equivalent, including NULL handling, to The types of involved expressions must be ordered as defined in "Comparison operators". Expressions of the form yield a boolean value true if expr does not have a specific type (case A) or if expr has a specific type (case B). In other cases the result is a boolean value false. Unary operators have the highest precedence. There are five precedence levels for binary operators. Multiplication operators bind strongest, followed by addition operators, comparison operators, && (logical AND), and finally || (logical OR) Binary operators of the same precedence associate from left to right. For instance, x / y * z is the same as (x / y) * z. Note that the operator precedence is reflected explicitly by the grammar. Arithmetic operators apply to numeric values and yield a result of the same type as the first operand. The four standard arithmetic operators (+, -, *, /) apply to integer, rational, floating-point, and complex types; + also applies to strings; +,- also applies to times. All other arithmetic operators apply to integers only. sum integers, rationals, floats, complex values, strings difference integers, rationals, floats, complex values, times product integers, rationals, floats, complex values / quotient integers, rationals, floats, complex values % remainder integers & bitwise AND integers | bitwise OR integers ^ bitwise XOR integers &^ bit clear (AND NOT) integers << left shift integer << unsigned integer >> right shift integer >> unsigned integer Strings can be concatenated using the + operator String addition creates a new string by concatenating the operands. A value of type duration can be added to or subtracted from a value of type time. Times can subtracted from each other producing a value of type duration. For two integer values x and y, the integer quotient q = x / y and remainder r = x % y satisfy the following relationships with x / y truncated towards zero ("truncated division"). As an exception to this rule, if the dividend x is the most negative value for the int type of x, the quotient q = x / -1 is equal to x (and r = 0). If the divisor is a constant expression, it must not be zero. If the divisor is zero at run time, a run-time error occurs. If the dividend is non-negative and the divisor is a constant power of 2, the division may be replaced by a right shift, and computing the remainder may be replaced by a bitwise AND operation The shift operators shift the left operand by the shift count specified by the right operand. They implement arithmetic shifts if the left operand is a signed integer and logical shifts if it is an unsigned integer. There is no upper limit on the shift count. Shifts behave as if the left operand is shifted n times by 1 for a shift count of n. As a result, x << 1 is the same as x*2 and x >> 1 is the same as x/2 but truncated towards negative infinity. For integer operands, the unary operators +, -, and ^ are defined as follows For floating-point and complex numbers, +x is the same as x, while -x is the negation of x. The result of a floating-point or complex division by zero is not specified beyond the IEEE-754 standard; whether a run-time error occurs is implementation-specific. Whenever any operand of any arithmetic operation, unary or binary, is NULL, as well as in the case of the string concatenating operation, the result is NULL. For unsigned integer values, the operations +, -, *, and << are computed modulo 2n, where n is the bit width of the unsigned integer's type. Loosely speaking, these unsigned integer operations discard high bits upon overflow, and expressions may rely on “wrap around”. For signed integers with a finite bit width, the operations +, -, *, and << may legally overflow and the resulting value exists and is deterministically defined by the signed integer representation, the operation, and its operands. No exception is raised as a result of overflow. An evaluator may not optimize an expression under the assumption that overflow does not occur. For instance, it may not assume that x < x + 1 is always true. Integers of type bigint and rationals do not overflow but their handling is limited by the memory resources available to the program. Comparison operators compare two operands and yield a boolean value. In any comparison, the first operand must be of same type as is the second operand, or vice versa. The equality operators == and != apply to operands that are comparable. The ordering operators <, <=, >, and >= apply to operands that are ordered. These terms and the result of the comparisons are defined as follows - Boolean values are comparable. Two boolean values are equal if they are either both true or both false. - Complex values are comparable. Two complex values u and v are equal if both real(u) == real(v) and imag(u) == imag(v). - Integer values are comparable and ordered, in the usual way. Note that durations are integers. - Floating point values are comparable and ordered, as defined by the IEEE-754 standard. - Rational values are comparable and ordered, in the usual way. - String and Blob values are comparable and ordered, lexically byte-wise. - Time values are comparable and ordered. Whenever any operand of any comparison operation is NULL, the result is NULL. Note that slices are always of type string. Logical operators apply to boolean values and yield a boolean result. The right operand is evaluated conditionally. The truth tables for logical operations with NULL values Conversions are expressions of the form T(x) where T is a type and x is an expression that can be converted to type T. A constant value x can be converted to type T in any of these cases: - x is representable by a value of type T. - x is a floating-point constant, T is a floating-point type, and x is representable by a value of type T after rounding using IEEE 754 round-to-even rules. The constant T(x) is the rounded value. - x is an integer constant and T is a string type. The same rule as for non-constant x applies in this case. Converting a constant yields a typed constant as result. A non-constant value x can be converted to type T in any of these cases: - x has type T. - x's type and T are both integer or floating point types. - x's type and T are both complex types. - x is an integer, except bigint or duration, and T is a string type. Specific rules apply to (non-constant) conversions between numeric types or to and from a string type. These conversions may change the representation of x and incur a run-time cost. All other conversions only change the type but not the representation of x. A conversion of NULL to any type yields NULL. For the conversion of non-constant numeric values, the following rules apply 1. When converting between integer types, if the value is a signed integer, it is sign extended to implicit infinite precision; otherwise it is zero extended. It is then truncated to fit in the result type's size. For example, if v == uint16(0x10F0), then uint32(int8(v)) == 0xFFFFFFF0. The conversion always yields a valid value; there is no indication of overflow. 2. When converting a floating-point number to an integer, the fraction is discarded (truncation towards zero). 3. When converting an integer or floating-point number to a floating-point type, or a complex number to another complex type, the result value is rounded to the precision specified by the destination type. For instance, the value of a variable x of type float32 may be stored using additional precision beyond that of an IEEE-754 32-bit number, but float32(x) represents the result of rounding x's value to 32-bit precision. Similarly, x + 0.1 may use more than 32 bits of precision, but float32(x + 0.1) does not. In all non-constant conversions involving floating-point or complex values, if the result type cannot represent the value the conversion succeeds but the result value is implementation-dependent. 1. Converting a signed or unsigned integer value to a string type yields a string containing the UTF-8 representation of the integer. Values outside the range of valid Unicode code points are converted to "\uFFFD". 2. Converting a blob to a string type yields a string whose successive bytes are the elements of the blob. 3. Converting a value of a string type to a blob yields a blob whose successive elements are the bytes of the string. 4. Converting a value of a bigint type to a string yields a string containing the decimal decimal representation of the integer. 5. Converting a value of a string type to a bigint yields a bigint value containing the integer represented by the string value. A prefix of “0x” or “0X” selects base 16; the “0” prefix selects base 8, and a “0b” or “0B” prefix selects base 2. Otherwise the value is interpreted in base 10. An error occurs if the string value is not in any valid format. 6. Converting a value of a rational type to a string yields a string containing the decimal decimal representation of the rational in the form "a/b" (even if b == 1). 7. Converting a value of a string type to a bigrat yields a bigrat value containing the rational represented by the string value. The string can be given as a fraction "a/b" or as a floating-point number optionally followed by an exponent. An error occurs if the string value is not in any valid format. 8. Converting a value of a duration type to a string returns a string representing the duration in the form "72h3m0.5s". Leading zero units are omitted. As a special case, durations less than one second format using a smaller unit (milli-, micro-, or nanoseconds) to ensure that the leading digit is non-zero. The zero duration formats as 0, with no unit. 9. Converting a string value to a duration yields a duration represented by the string. A duration string is a possibly signed sequence of decimal numbers, each with optional fraction and a unit suffix, such as "300ms", "-1.5h" or "2h45m". Valid time units are "ns", "us" (or "µs"), "ms", "s", "m", "h". 10. Converting a time value to a string returns the time formatted using the format string When evaluating the operands of an expression or of function calls, operations are evaluated in lexical left-to-right order. For example, in the evaluation of the function calls and evaluation of c happen in the order h(), i(), j(), c. Floating-point operations within a single expression are evaluated according to the associativity of the operators. Explicit parentheses affect the evaluation by overriding the default associativity. In the expression x + (y + z) the addition y + z is performed before adding x. Statements control execution. The empty statement does nothing. Alter table statements modify existing tables. With the ADD clause it adds a new column to the table. The column must not exist. With the DROP clause it removes an existing column from a table. The column must exist and it must be not the only (last) column of the table. IOW, there cannot be a table with no columns. For example When adding a column to a table with existing data, the constraint clause of the ColumnDef cannot be used. Adding a constrained column to an empty table is fine. Begin transactions statements introduce a new transaction level. Every transaction level must be eventually balanced by exactly one of COMMIT or ROLLBACK statements. Note that when a transaction is roll-backed because of a statement failure then no explicit balancing of the respective BEGIN TRANSACTION is statement is required nor permitted. Failure to properly balance any opened transaction level may cause dead locks and/or lose of data updated in the uppermost opened but never properly closed transaction level. For example A database cannot be updated (mutated) outside of a transaction. Statements requiring a transaction A database is effectively read only outside of a transaction. Statements not requiring a transaction The commit statement closes the innermost transaction nesting level. If that's the outermost level then the updates to the DB made by the transaction are atomically made persistent. For example Create index statements create new indices. Index is a named projection of ordered values of a table column to the respective records. As a special case the id() of the record can be indexed. Index name must not be the same as any of the existing tables and it also cannot be the same as of any column name of the table the index is on. For example Now certain SELECT statements may use the indices to speed up joins and/or to speed up record set filtering when the WHERE clause is used; or the indices might be used to improve the performance when the ORDER BY clause is present. The UNIQUE modifier requires the indexed values tuple to be index-wise unique or have all values NULL. The optional IF NOT EXISTS clause makes the statement a no operation if the index already exists. A simple index consists of only one expression which must be either a column name or the built-in id(). A more complex and more general index is one that consists of more than one expression or its single expression does not qualify as a simple index. In this case the type of all expressions in the list must be one of the non blob-like types. Note: Blob-like types are blob, bigint, bigrat, time and duration. Create table statements create new tables. A column definition declares the column name and type. Table names and column names are case sensitive. Neither a table or an index of the same name may exist in the DB. For example The optional IF NOT EXISTS clause makes the statement a no operation if the table already exists. The optional constraint clause has two forms. The first one is found in many SQL dialects. This form prevents the data in column DepartmentName to be NULL. The second form allows an arbitrary boolean expression to be used to validate the column. If the value of the expression is true then the validation succeeded. If the value of the expression is false or NULL then the validation fails. If the value of the expression is not of type bool an error occurs. The optional DEFAULT clause is an expression which, if present, is substituted instead of a NULL value when the colum is assigned a value. Note that the constraint and/or default expressions may refer to other columns by name: When a table row is inserted by the INSERT INTO statement or when a table row is updated by the UPDATE statement, the order of operations is as follows: 1. The new values of the affected columns are set and the values of all the row columns become the named values which can be referred to in default expressions evaluated in step 2. 2. If any row column value is NULL and the DEFAULT clause is present in the column's definition, the default expression is evaluated and its value is set as the respective column value. 3. The values, potentially updated, of row columns become the named values which can be referred to in constraint expressions evaluated during step 4. 4. All row columns which definition has the constraint clause present will have that constraint checked. If any constraint violation is detected, the overall operation fails and no changes to the table are made. Delete from statements remove rows from a table, which must exist. For example If the WHERE clause is not present then all rows are removed and the statement is equivalent to the TRUNCATE TABLE statement. Drop index statements remove indices from the DB. The index must exist. For example The optional IF EXISTS clause makes the statement a no operation if the index does not exist. Drop table statements remove tables from the DB. The table must exist. For example The optional IF EXISTS clause makes the statement a no operation if the table does not exist. Insert into statements insert new rows into tables. New rows come from literal data, if using the VALUES clause, or are a result of select statement. In the later case the select statement is fully evaluated before the insertion of any rows is performed, allowing to insert values calculated from the same table rows are to be inserted into. If the ColumnNameList part is omitted then the number of values inserted in the row must be the same as are columns in the table. If the ColumnNameList part is present then the number of values per row must be same as the same number of column names. All other columns of the record are set to NULL. The type of the value assigned to a column must be the same as is the column's type or the value must be NULL. For example If any of the columns of the table were defined using the optional constraints clause or the optional defaults clause then those are processed on a per row basis. The details are discussed in the "Constraints and defaults" chapter below the CREATE TABLE statement documentation. Explain statement produces a recordset consisting of lines of text which describe the execution plan of a statement, if any. For example, the QL tool treats the explain statement specially and outputs the joined lines: The explanation may aid in uderstanding how a statement/query would be executed and if indices are used as expected - or which indices may possibly improve the statement performance. The create index statements above were directly copy/pasted in the terminal from the suggestions provided by the filter recordset pipeline part returned by the explain statement. If the statement has nothing special in its plan, the result is the original statement. To get an explanation of the select statement of the IN predicate, use the EXPLAIN statement with that particular select statement. The rollback statement closes the innermost transaction nesting level discarding any updates to the DB made by it. If that's the outermost level then the effects on the DB are as if the transaction never happened. For example The (temporary) record set from the last statement is returned and can be processed by the client. In this case the rollback is the same as 'DROP TABLE tmp;' but it can be a more complex operation. Select from statements produce recordsets. The optional DISTINCT modifier ensures all rows in the result recordset are unique. Either all of the resulting fields are returned ('*') or only those named in FieldList. RecordSetList is a list of table names or parenthesized select statements, optionally (re)named using the AS clause. The result can be filtered using a WhereClause and orderd by the OrderBy clause. For example If Recordset is a nested, parenthesized SelectStmt then it must be given a name using the AS clause if its field are to be accessible in expressions. A field is an named expression. Identifiers, not used as a type in conversion or a function name in the Call clause, denote names of (other) fields, values of which should be used in the expression. The expression can be named using the AS clause. If the AS clause is not present and the expression consists solely of a field name, then that field name is used as the name of the resulting field. Otherwise the field is unnamed. For example The SELECT statement can optionally enumerate the desired/resulting fields in a list. No two identical field names can appear in the list. When more than one record set is used in the FROM clause record set list, the result record set field names are rewritten to be qualified using the record set names. If a particular record set doesn't have a name, its respective fields became unnamed. The optional JOIN clause, for example is mostly equal to except that the rows from a which, when they appear in the cross join, never made expr to evaluate to true, are combined with a virtual row from b, containing all nulls, and added to the result set. For the RIGHT JOIN variant the discussed rules are used for rows from b not satisfying expr == true and the virtual, all-null row "comes" from a. The FULL JOIN adds the respective rows which would be otherwise provided by the separate executions of the LEFT JOIN and RIGHT JOIN variants. For more thorough OUTER JOIN discussion please see the Wikipedia article at [10]. Resultins rows of a SELECT statement can be optionally ordered by the ORDER BY clause. Collating proceeds by considering the expressions in the expression list left to right until a collating order is determined. Any possibly remaining expressions are not evaluated. All of the expression values must yield an ordered type or NULL. Ordered types are defined in "Comparison operators". Collating of elements having a NULL value is different compared to what the comparison operators yield in expression evaluation (NULL result instead of a boolean value). Below, T denotes a non NULL value of any QL type. NULL collates before any non NULL value (is considered smaller than T). Two NULLs have no collating order (are considered equal). The WHERE clause restricts records considered by some statements, like SELECT FROM, DELETE FROM, or UPDATE. It is an error if the expression evaluates to a non null value of non bool type. Another form of the WHERE clause is an existence predicate of a parenthesized select statement. The EXISTS form evaluates to true if the parenthesized SELECT statement produces a non empty record set. The NOT EXISTS form evaluates to true if the parenthesized SELECT statement produces an empty record set. The parenthesized SELECT statement is evaluated only once (TODO issue #159). The GROUP BY clause is used to project rows having common values into a smaller set of rows. For example Using the GROUP BY without any aggregate functions in the selected fields is in certain cases equal to using the DISTINCT modifier. The last two examples above produce the same resultsets. The optional OFFSET clause allows to ignore first N records. For example The above will produce only rows 11, 12, ... of the record set, if they exist. The value of the expression must a non negative integer, but not bigint or duration. The optional LIMIT clause allows to ignore all but first N records. For example The above will return at most the first 10 records of the record set. The value of the expression must a non negative integer, but not bigint or duration. The LIMIT and OFFSET clauses can be combined. For example Considering table t has, say 10 records, the above will produce only records 4 - 8. After returning record #8, no more result rows/records are computed. 1. The FROM clause is evaluated, producing a Cartesian product of its source record sets (tables or nested SELECT statements). 2. If present, the JOIN cluase is evaluated on the result set of the previous evaluation and the recordset specified by the JOIN clause. (... JOIN Recordset ON ...) 3. If present, the WHERE clause is evaluated on the result set of the previous evaluation. 4. If present, the GROUP BY clause is evaluated on the result set of the previous evaluation(s). 5. The SELECT field expressions are evaluated on the result set of the previous evaluation(s). 6. If present, the DISTINCT modifier is evaluated on the result set of the previous evaluation(s). 7. If present, the ORDER BY clause is evaluated on the result set of the previous evaluation(s). 8. If present, the OFFSET clause is evaluated on the result set of the previous evaluation(s). The offset expression is evaluated once for the first record produced by the previous evaluations. 9. If present, the LIMIT clause is evaluated on the result set of the previous evaluation(s). The limit expression is evaluated once for the first record produced by the previous evaluations. Truncate table statements remove all records from a table. The table must exist. For example Update statements change values of fields in rows of a table. For example Note: The SET clause is optional. If any of the columns of the table were defined using the optional constraints clause or the optional defaults clause then those are processed on a per row basis. The details are discussed in the "Constraints and defaults" chapter below the CREATE TABLE statement documentation. To allow to query for DB meta data, there exist specially named tables, some of them being virtual. Note: Virtual system tables may have fake table-wise unique but meaningless and unstable record IDs. Do not apply the built-in id() to any system table. The table __Table lists all tables in the DB. The schema is The Schema column returns the statement to (re)create table Name. This table is virtual. The table __Colum lists all columns of all tables in the DB. The schema is The Ordinal column defines the 1-based index of the column in the record. This table is virtual. The table __Colum2 lists all columns of all tables in the DB which have the constraint NOT NULL or which have a constraint expression defined or which have a default expression defined. The schema is It's possible to obtain a consolidated recordset for all properties of all DB columns using The Name column is the column name in TableName. The table __Index lists all indices in the DB. The schema is The IsUnique columns reflects if the index was created using the optional UNIQUE clause. This table is virtual. Built-in functions are predeclared. The built-in aggregate function avg returns the average of values of an expression. Avg ignores NULL values, but returns NULL if all values of a column are NULL or if avg is applied to an empty record set. The column values must be of a numeric type. The built-in function contains returns true if substr is within s. If any argument to contains is NULL the result is NULL. The built-in aggregate function count returns how many times an expression has a non NULL values or the number of rows in a record set. Note: count() returns 0 for an empty record set. For example Date returns the time corresponding to in the appropriate zone for that time in the given location. The month, day, hour, min, sec, and nsec values may be outside their usual ranges and will be normalized during the conversion. For example, October 32 converts to November 1. A daylight savings time transition skips or repeats times. For example, in the United States, March 13, 2011 2:15am never occurred, while November 6, 2011 1:15am occurred twice. In such cases, the choice of time zone, and therefore the time, is not well-defined. Date returns a time that is correct in one of the two zones involved in the transition, but it does not guarantee which. A location maps time instants to the zone in use at that time. Typically, the location represents the collection of time offsets in use in a geographical area, such as "CEST" and "CET" for central Europe. "local" represents the system's local time zone. "UTC" represents Universal Coordinated Time (UTC). The month specifies a month of the year (January = 1, ...). If any argument to date is NULL the result is NULL. The built-in function day returns the day of the month specified by t. If the argument to day is NULL the result is NULL. The built-in function formatTime returns a textual representation of the time value formatted according to layout, which defines the format by showing how the reference time, would be displayed if it were the value; it serves as an example of the desired output. The same display rules will then be applied to the time value. If any argument to formatTime is NULL the result is NULL. NOTE: The string value of the time zone, like "CET" or "ACDT", is dependent on the time zone of the machine the function is run on. For example, if the t value is in "CET", but the machine is in "ACDT", instead of "CET" the result is "+0100". This is the same what Go (time.Time).String() returns and in fact formatTime directly calls t.String(). returns on a machine in the CET time zone, but may return on a machine in the ACDT zone. The time value is in both cases the same so its ordering and comparing is correct. Only the display value can differ. The built-in functions formatFloat and formatInt format numbers to strings using go's number format functions in the `strconv` package. For all three functions, only the first argument is mandatory. The default values of the rest are shown in the examples. If the first argument is NULL, the result is NULL. returns returns returns Unlike the `strconv` equivalent, the formatInt function handles all integer types, both signed and unsigned. The built-in function hasPrefix tests whether the string s begins with prefix. If any argument to hasPrefix is NULL the result is NULL. The built-in function hasSuffix tests whether the string s ends with suffix. If any argument to hasSuffix is NULL the result is NULL. The built-in function hour returns the hour within the day specified by t, in the range [0, 23]. If the argument to hour is NULL the result is NULL. The built-in function hours returns the duration as a floating point number of hours. If the argument to hours is NULL the result is NULL. The built-in function id takes zero or one arguments. If no argument is provided, id() returns a table-unique automatically assigned numeric identifier of type int. Ids of deleted records are not reused unless the DB becomes completely empty (has no tables). For example If id() without arguments is called for a row which is not a table record then the result value is NULL. For example If id() has one argument it must be a table name of a table in a cross join. For example The built-in function len takes a string argument and returns the lentgh of the string in bytes. The expression len(s) is constant if s is a string constant. If the argument to len is NULL the result is NULL. The built-in aggregate function max returns the largest value of an expression in a record set. Max ignores NULL values, but returns NULL if all values of a column are NULL or if max is applied to an empty record set. The expression values must be of an ordered type. For example The built-in aggregate function min returns the smallest value of an expression in a record set. Min ignores NULL values, but returns NULL if all values of a column are NULL or if min is applied to an empty record set. For example The column values must be of an ordered type. The built-in function minute returns the minute offset within the hour specified by t, in the range [0, 59]. If the argument to minute is NULL the result is NULL. The built-in function minutes returns the duration as a floating point number of minutes. If the argument to minutes is NULL the result is NULL. The built-in function month returns the month of the year specified by t (January = 1, ...). If the argument to month is NULL the result is NULL. The built-in function nanosecond returns the nanosecond offset within the second specified by t, in the range [0, 999999999]. If the argument to nanosecond is NULL the result is NULL. The built-in function nanoseconds returns the duration as an integer nanosecond count. If the argument to nanoseconds is NULL the result is NULL. The built-in function now returns the current local time. The built-in function parseTime parses a formatted string and returns the time value it represents. The layout defines the format by showing how the reference time, would be interpreted if it were the value; it serves as an example of the input format. The same interpretation will then be made to the input string. Elements omitted from the value are assumed to be zero or, when zero is impossible, one, so parsing "3:04pm" returns the time corresponding to Jan 1, year 0, 15:04:00 UTC (note that because the year is 0, this time is before the zero Time). Years must be in the range 0000..9999. The day of the week is checked for syntax but it is otherwise ignored. In the absence of a time zone indicator, parseTime returns a time in UTC. When parsing a time with a zone offset like -0700, if the offset corresponds to a time zone used by the current location, then parseTime uses that location and zone in the returned time. Otherwise it records the time as being in a fabricated location with time fixed at the given zone offset. When parsing a time with a zone abbreviation like MST, if the zone abbreviation has a defined offset in the current location, then that offset is used. The zone abbreviation "UTC" is recognized as UTC regardless of location. If the zone abbreviation is unknown, Parse records the time as being in a fabricated location with the given zone abbreviation and a zero offset. This choice means that such a time can be parses and reformatted with the same layout losslessly, but the exact instant used in the representation will differ by the actual zone offset. To avoid such problems, prefer time layouts that use a numeric zone offset. If any argument to parseTime is NULL the result is NULL. The built-in function second returns the second offset within the minute specified by t, in the range [0, 59]. If the argument to second is NULL the result is NULL. The built-in function seconds returns the duration as a floating point number of seconds. If the argument to seconds is NULL the result is NULL. The built-in function since returns the time elapsed since t. It is shorthand for now()-t. If the argument to since is NULL the result is NULL. The built-in aggregate function sum returns the sum of values of an expression for all rows of a record set. Sum ignores NULL values, but returns NULL if all values of a column are NULL or if sum is applied to an empty record set. The column values must be of a numeric type. The built-in function timeIn returns t with the location information set to loc. For discussion of the loc argument please see date(). If any argument to timeIn is NULL the result is NULL. The built-in function weekday returns the day of the week specified by t. Sunday == 0, Monday == 1, ... If the argument to weekday is NULL the result is NULL. The built-in function year returns the year in which t occurs. If the argument to year is NULL the result is NULL. The built-in function yearDay returns the day of the year specified by t, in the range [1,365] for non-leap years, and [1,366] in leap years. If the argument to yearDay is NULL the result is NULL. Three functions assemble and disassemble complex numbers. The built-in function complex constructs a complex value from a floating-point real and imaginary part, while real and imag extract the real and imaginary parts of a complex value. The type of the arguments and return value correspond. For complex, the two arguments must be of the same floating-point type and the return type is the complex type with the corresponding floating-point constituents: complex64 for float32, complex128 for float64. The real and imag functions together form the inverse, so for a complex value z, z == complex(real(z), imag(z)). If the operands of these functions are all constants, the return value is a constant. If any argument to any of complex, real, imag functions is NULL the result is NULL. For the numeric types, the following sizes are guaranteed Portions of this specification page are modifications based on work[2] created and shared by Google[3] and used according to terms described in the Creative Commons 3.0 Attribution License[4]. This specification is licensed under the Creative Commons Attribution 3.0 License, and code is licensed under a BSD license[5]. Links from the above documentation This section is not part of the specification. WARNING: The implementation of indices is new and it surely needs more time to become mature. Indices are used currently used only by the WHERE clause. The following expression patterns of 'WHERE expression' are recognized and trigger index use. The relOp is one of the relation operators <, <=, ==, >=, >. For the equality operator both operands must be of comparable types. For all other operators both operands must be of ordered types. The constant expression is a compile time constant expression. Some constant folding is still a TODO. Parameter is a QL parameter ($1 etc.). Consider tables t and u, both with an indexed field f. The WHERE expression doesn't comply with the above simple detected cases. However, such query is now automatically rewritten to which will use both of the indices. The impact of using the indices can be substantial (cf. BenchmarkCrossJoin*) if the resulting rows have low "selectivity", ie. only few rows from both tables are selected by the respective WHERE filtering. Note: Existing QL DBs can be used and indices can be added to them. However, once any indices are present in the DB, the old QL versions cannot work with such DB anymore. Running a benchmark with -v (-test.v) outputs information about the scale used to report records/s and a brief description of the benchmark. For example Running the full suite of benchmarks takes a lot of time. Use the -timeout flag to avoid them being killed after the default time limit (10 minutes).
Package addrmgr implements concurrency safe Decred address manager. In order maintain the peer-to-peer Decred network, there needs to be a source of addresses to connect to as nodes come and go. The Decred protocol provides the getaddr and addr messages to allow peers to communicate known addresses with each other. However, there needs to a mechanism to store those results and select peers from them. It is also important to note that remote peers can't be trusted to send valid peers nor attempt to provide you with only peers they control with malicious intent. With that in mind, this package provides a concurrency safe address manager for caching and selecting peers in a non-deterministic manner. The general idea is the caller adds addresses to the address manager and notifies it when addresses are connected, known good, and attempted. The caller also requests addresses as it needs them. The address manager internally segregates the addresses into groups and non-deterministically selects groups in a cryptographically random manner. This reduce the chances multiple addresses from the same nets are selected which generally helps provide greater peer diversity, and perhaps more importantly, drastically reduces the chances an attacker is able to coerce your peer into only connecting to nodes they control. The address manager also understands routability and Tor addresses and tries hard to only return routable addresses. In addition, it uses the information provided by the caller about connected, known good, and attempted addresses to periodically purge peers which no longer appear to be good peers as well as bias the selection toward known good peers. The general idea is to make a best effort at only providing usable addresses.
Package cloudwatchevents provides the API client, operations, and parameter types for Amazon CloudWatch Events. Amazon EventBridge helps you to respond to state changes in your Amazon Web Services resources. When your resources change state, they automatically send events to an event stream. You can create rules that match selected events in the stream and route them to targets to take action. You can also use rules to take action on a predetermined schedule. For example, you can configure rules to: Automatically invoke an Lambda function to update DNS entries when an event notifies you that Amazon EC2 instance enters the running state. Direct specific API records from CloudTrail to an Amazon Kinesis data stream for detailed analysis of potential security or availability risks. Periodically invoke a built-in target to create a snapshot of an Amazon EBS volume. For more information about the features of Amazon EventBridge, see the Amazon EventBridge User Guide.
Package cli provides a framework to build command line applications in Go with most of the burden of arguments parsing and validation placed on the framework instead of the user. To create a new application, initialize an app with cli.App. Specify a name and a brief description for the application: To attach code to execute when the app is launched, assign a function to the Action field: To assign a version to the application, use Version method and specify the flags that will be used to invoke the version command: Finally, in the main func, call Run passing in the arguments for parsing: To add one or more command line options (also known as flags), use one of the short-form StringOpt, StringsOpt, IntOpt, IntsOpt, Float64Opt, Floats64Opt, or BoolOpt methods on App (or Cmd if adding flags to a command or a subcommand). For example, to add a boolean flag to the cp command that specifies recursive mode, use the following: or: The first version returns a new pointer to a bool value which will be populated when the app is run, whereas the second version will populate a pointer to an existing variable you specify. The option name(s) is a space separated list of names (without the dashes). The one letter names can then be called with a single dash (short option, -R), the others with two dashes (long options, --recursive). You also specify the default value for the option if it is not supplied by the user. The last parameter is the description to be shown in help messages. There is also a second set of methods on App called String, Strings, Int, Ints, and Bool, which accept a long-form struct of the type: cli.StringOpt, cli.StringsOpt, cli.IntOpt, cli.IntsOpt, cli.Float64Opt, cli.Floats64Opt, cli.BoolOpt. The struct describes the option and allows the use of additional features not available in the short-form methods described above: Or: The first version returns a new pointer to a value which will be populated when the app is run, whereas the second version will populate a pointer to an existing variable you specify. Two features, EnvVar and SetByUser, can be defined in the long-form struct method. EnvVar is a space separated list of environment variables used to initialize the option if a value is not provided by the user. When help messages are shown, the value of any environment variables will be displayed. SetByUser is a pointer to a boolean variable that is set to true if the user specified the value on the command line. This can be useful to determine if the value of the option was explicitly set by the user or set via the default value. You can only access the values stored in the pointers in the Action func, which is invoked after argument parsing has been completed. This precludes using the value of one option as the default value of another. On the command line, the following syntaxes are supported when specifying options. Boolean options: String, int and float options: Slice options (StringsOpt, IntsOpt, Floats64Opt) where option is repeated to accumulate values in a slice: To add one or more command line arguments (not prefixed by dashes), use one of the short-form StringArg, StringsArg, IntArg, IntsArg, Float64Arg, Floats64Arg, or BoolArg methods on App (or Cmd if adding arguments to a command or subcommand). For example, to add two string arguments to our cp command, use the following calls: Or: The first version returns a new pointer to a value which will be populated when the app is run, whereas the second version will populate a pointer to an existing variable you specify. You then specify the argument as will be displayed in help messages. Argument names must be specified as all uppercase. The next parameter is the default value for the argument if it is not supplied. And the last is the description to be shown in help messages. There is also a second set of methods on App called String, Strings, Int, Ints, Float64, Floats64 and Bool, which accept a long-form struct of the type: cli.StringArg, cli.StringsArg, cli.IntArg, cli.IntsArg, cli.BoolArg. The struct describes the arguments and allows the use of additional features not available in the short-form methods described above: Or: The first version returns a new pointer to a value which will be populated when the app is run, whereas the second version will populate a pointer to an existing variable you specify. Two features, EnvVar and SetByUser, can be defined in the long-form struct method. EnvVar is a space separated list of environment variables used to initialize the argument if a value is not provided by the user. When help messages are shown, the value of any environment variables will be displayed. SetByUser is a pointer to a boolean variable that is set to true if the user specified the value on the command line. This can be useful to determine if the value of the argument was explicitly set by the user or set via the default value. You can only access the values stored in the pointers in the Action func, which is invoked after argument parsing has been completed. This precludes using the value of one argument as the default value of another. The -- operator marks the end of command line options. Everything that follows will be treated as an argument, even if starts with a dash. For example, the standard POSIX touch command, which takes a filename as an argument (and possibly other options that we'll ignore here), could be defined as: If we try to create a file named "-f" via our touch command: It will fail because the -f will be parsed as an option, not as an argument. The fix is to insert -- after all flags have been specified, so the remaining arguments are parsed as arguments instead of options as follows: This ensures the -f is parsed as an argument instead of a flag named f. This package supports nesting of commands and subcommands. Declare a top-level command by calling the Command func on the top-level App struct. For example, the following creates an application called docker that will have one command called run: The first argument is the name of the command the user will specify on the command line to invoke this command. The second argument is the description of the command shown in help messages. And, the last argument is a CmdInitializer, which is a function that receives a pointer to a Cmd struct representing the command. Within this function, define the options and arguments for the command by calling the same methods as you would with top-level App struct (BoolOpt, StringArg, ...). To execute code when the command is invoked, assign a function to the Action field of the Cmd struct. Within that function, you can safely refer to the options and arguments as command line parsing will be completed at the time the function is invoked: Optionally, to provide a more extensive description of the command, assign a string to LongDesc, which is displayed when a user invokes --help. A LongDesc can be provided for Cmds as well as the top-level App: Subcommands can be added by calling Command on the Cmd struct. They can by defined to any depth if needed: Command and subcommand aliases are also supported. To define one or more aliases, specify a space-separated list of strings to the first argument of Command: With the command structure defined above, users can invoke the app in a variety of ways: Commands can be hidden in the help messages. This can prove useful to deprecate a command so that it does not appear to new users in the help, but still exists to not break existing scripts. To hide a command, set the Hidden field to true: As a convenience, to assign an Action to a func with no arguments, use ActionCommand when defining the Command. For example, the following two statements are equivalent: Please note that options, arguments, specs, and long descriptions cannot be provided when using ActionCommand. This is intended for very simple command invocations that take no arguments. Finally, as a side-note, it may seem a bit weird that this package uses a function to initialize a command instead of simply returning a command struct. The motivation behind this API decision is scoping: as with the standard flag package, adding an option or an argument returns a pointer to a value which will be populated when the app is run. Since you'll want to store these pointers in variables, and to avoid having dozens of them in the same scope (the main func for example or as global variables), this API was specifically tailored to take a func parameter (called CmdInitializer), which accepts the command struct. With this design, the command's specific variables are limited in scope to this function. Interceptors, or hooks, can be defined to be executed before and after a command or when any of its subcommands are executed. For example, the following app defines multiple commands as well as a global flag which toggles verbosity: Instead of duplicating the check for the verbose flag and setting the debug level in every command (and its sub-commands), a Before interceptor can be set on the top-level App instead: Whenever a valid command is called by the user, all the Before interceptors defined on the app and the intermediate commands will be called, in order from the root to the leaf. Similarly, to execute a hook after a command has been called, e.g. to cleanup resources allocated in Before interceptors, simply set the After field of the App struct or any other Command. After interceptors will be called, in order, from the leaf up to the root (the opposite order of the Before interceptors). The following diagram shows when and in which order multiple Before and After interceptors are executed: To exit the application, use cli.Exit function, which accepts an exit code and exits the app with the provided code. It is important to use cli.Exit instead of os.Exit as the former ensures that all of the After interceptors are executed before exiting. An App or Command's invocation syntax can be customized using spec strings. This can be useful to indicate that an argument is optional or that two options are mutually exclusive. The spec string is one of the key differentiators between this package and other CLI packages as it allows the developer to express usage in a simple, familiar, yet concise grammar. To define option and argument usage for the top-level App, assign a spec string to the App's Spec field: Likewise, to define option and argument usage for a command or subcommand, assign a spec string to the Command's Spec field: The spec syntax is mostly based on the conventions used in POSIX command line applications (help messages and man pages). This syntax is described in full below. If a user invokes the app or command with the incorrect syntax, the app terminates with a help message showing the proper invocation. The remainder of this section describes the many features and capabilities of the spec string grammar. Options can use both short and long option names in spec strings. In the example below, the option is mandatory and must be provided. Any options referenced in a spec string MUST be explicitly declared, otherwise this package will panic. I.e. for each item in the spec string, a corresponding *Opt or *Arg is required: Arguments are specified with all-uppercased words. In the example below, both SRC and DST must be provided by the user (two arguments). Like options, any argument referenced in a spec string MUST be explicitly declared, otherwise this package will panic: With the exception of options, the order of the elements in a spec string is respected and enforced when command line arguments are parsed. In the example below, consecutive options (-f and -g) are parsed regardless of the order they are specified (both "-f=5 -g=6" and "-g=6 -f=5" are valid). Order between options and arguments is significant (-f and -g must appear before the SRC argument). The same holds true for arguments, where SRC must appear before DST: Optionality of options and arguments is specified in a spec string by enclosing the item in square brackets []. If the user does not provide an optional value, the app will use the default value specified when the argument was defined. In the example below, if -x is not provided, heapSize will default to 1024: Choice between two or more items is specified in a spec string by separating each choice with the | operator. Choices are mutually exclusive. In the examples below, only a single choice can be provided by the user otherwise the app will terminate displaying a help message on proper usage: Repetition of options and arguments is specified in a spec string with the ... postfix operator to mark an item as repeatable. Both options and arguments support repitition. In the example below, users may invoke the command with multiple -e options and multiple SRC arguments: Grouping of options and arguments is specified in a spec string with parenthesis. When combined with the choice | and repetition ... operators, complex syntaxes can be created. The parenthesis in the example below indicate a repeatable sequence of a -e option followed by an argument, and that is mutually exclusive to a choice between -x and -y options. Option groups, or option folding, are a shorthand method to declaring a choice between multiple options. I.e. any combination of the listed options in any order with at least one option selected. The following two statements are equivalent: Option groups are typically used in conjunction with optionality [] operators. I.e. any combination of the listed options in any order or none at all. The following two statements are equivalent: All of the options can be specified using a special syntax: [OPTIONS]. This is a special token in the spec string (not optionality and not an argument called OPTIONS). It is equivalent to an optional repeatable choice between all the available options. For example, if an app or a command declares 4 options a, b, c and d, then the following two statements are equivalent: Inline option values are specified in the spec string with the =<some-text> notation immediately following an option (long or short form) to provide users with an inline description or value. The actual inline values are ignored by the spec parser as they exist only to provide a contextual hint to the user. In the example below, "absolute-path" and "in seconds" are ignored by the parser: The -- operator can be used to automatically treat everything following it as arguments. In other words, placing a -- in the spec string automatically inserts a -- in the same position in the program call arguments. This lets you write programs such as the POSIX time utility for example: Below is the full EBNF grammar for the Specs language: By combining a few of these building blocks together (while respecting the grammar above), powerful and sophisticated validation constraints can be created in a simple and concise manner without having to define in code. This is one of the key differentiators between this package and other CLI packages. Validation of usage is handled entirely by the package through the spec string. Behind the scenes, this package parses the spec string and constructs a finite state machine used to parse the command line arguments. It also handles backtracking, which allows it to handle tricky cases, or what I like to call "the cp test": Without backtracking, this deceptively simple spec string cannot be parsed correctly. For instance, docopt can't handle this case, whereas this package does. By default an auto-generated spec string is created for the app and every command unless a spec string has been set by the user. This can simplify use of the package even further for simple syntaxes. The following logic is used to create an auto-generated spec string: 1) start with an empty spec string, 2) if at least one option was declared, append "[OPTIONS]" to the spec string, and 3) for each declared argument, append it, in the order of declaration, to the spec string. For example, given this command declaration: The auto-generated spec string, which should suffice for simple cases, would be: If additional constraints are required, the spec string must be set explicitly using the grammar documented above. By default, the following types are supported for options and arguments: bool, string, int, float64, strings (slice of strings), ints (slice of ints) and floats64 (slice of float64). You can, however, extend this package to handle other types, e.g. time.Duration, float64, or even your own struct types. To define your own custom type, you must implement the flag.Value interface for your custom type, and then declare the option or argument using VarOpt or VarArg respectively if using the short-form methods. If using the long-form struct, then use Var instead. The following example defines a custom type for a duration. It defines a duration argument that users will be able to invoke with strings in the form of "1h31m42s": To make a custom type to behave as a boolean option, i.e. doesn't take a value, it must implement the IsBoolFlag method that returns true: To make a custom type behave as a multi-valued option or argument, i.e. takes multiple values, it must implement the Clear method, which is called whenever the values list needs to be cleared, e.g. when the value was initially populated from an environment variable, and then explicitly set from the CLI: To hide the default value of a custom type, it must implement the IsDefault method that returns a boolean. The help message generator will use the return value to decide whether or not to display the default value to users:
Package blockchain implements Decred block handling and chain selection rules. The Decred block handling and chain selection rules are an integral, and quite likely the most important, part of decred. Unfortunately, at the time of this writing, these rules are also largely undocumented and had to be ascertained from the bitcoind source code. At its core, Decred is a distributed consensus of which blocks are valid and which ones will comprise the main block chain (public ledger) that ultimately determines accepted transactions, so it is extremely important that fully validating nodes agree on all rules. At a high level, this package provides support for inserting new blocks into the block chain according to the aforementioned rules. It includes functionality such as rejecting duplicate blocks, ensuring blocks and transactions follow all rules, orphan handling, and best chain selection along with reorganization. Since this package does not deal with other Decred specifics such as network communication or wallets, it provides a notification system which gives the caller a high level of flexibility in how they want to react to certain events such as orphan blocks which need their parents requested and newly connected main chain blocks which might result in wallet updates. Before a block is allowed into the block chain, it must go through an intensive series of validation rules. The following list serves as a general outline of those rules to provide some intuition into what is going on under the hood, but is by no means exhaustive: Errors returned by this package are either the raw errors provided by underlying calls or of type blockchain.RuleError. This allows the caller to differentiate between unexpected errors, such as database errors, versus errors due to rule violations through type assertions. In addition, callers can programmatically determine the specific rule violation by examining the ErrorCode field of the type asserted blockchain.RuleError. This package includes spec changes outlined by the following BIPs:
Package gosnowflake is a pure Go Snowflake driver for the database/sql package. Clients can use the database/sql package directly. For example: Use the Open() function to create a database handle with connection parameters: The Go Snowflake Driver supports the following connection syntaxes (or data source name (DSN) formats): where all parameters must be escaped or use Config and DSN to construct a DSN string. For information about account identifiers, see the Snowflake documentation (https://docs.snowflake.com/en/user-guide/admin-account-identifier.html). The following example opens a database handle with the Snowflake account named "my_account" under the organization named "my_organization", where the username is "jsmith", password is "mypassword", database is "mydb", schema is "testschema", and warehouse is "mywh": The connection string (DSN) can contain both connection parameters (described below) and session parameters (https://docs.snowflake.com/en/sql-reference/parameters.html). The following connection parameters are supported: account <string>: Specifies your Snowflake account, where "<string>" is the account identifier assigned to your account by Snowflake. For information about account identifiers, see the Snowflake documentation (https://docs.snowflake.com/en/user-guide/admin-account-identifier.html). If you are using a global URL, then append the connection group and ".global" (e.g. "<account_identifier>-<connection_group>.global"). The account identifier and the connection group are separated by a dash ("-"), as shown above. This parameter is optional if your account identifier is specified after the "@" character in the connection string. region <string>: DEPRECATED. You may specify a region, such as "eu-central-1", with this parameter. However, since this parameter is deprecated, it is best to specify the region as part of the account parameter. For details, see the description of the account parameter. database: Specifies the database to use by default in the client session (can be changed after login). schema: Specifies the database schema to use by default in the client session (can be changed after login). warehouse: Specifies the virtual warehouse to use by default for queries, loading, etc. in the client session (can be changed after login). role: Specifies the role to use by default for accessing Snowflake objects in the client session (can be changed after login). passcode: Specifies the passcode provided by Duo when using multi-factor authentication (MFA) for login. passcodeInPassword: false by default. Set to true if the MFA passcode is embedded in the login password. Appends the MFA passcode to the end of the password. loginTimeout: Specifies the timeout, in seconds, for login. The default is 60 seconds. The login request gives up after the timeout length if the HTTP response is success. requestTimeout: Specifies the timeout, in seconds, for a query to complete. 0 (zero) specifies that the driver should wait indefinitely. The default is 0 seconds. The query request gives up after the timeout length if the HTTP response is success. authenticator: Specifies the authenticator to use for authenticating user credentials: To use the internal Snowflake authenticator, specify snowflake (Default). If you want to cache your MFA logins, use AuthTypeUsernamePasswordMFA authenticator. To authenticate through Okta, specify https://<okta_account_name>.okta.com (URL prefix for Okta). To authenticate using your IDP via a browser, specify externalbrowser. To authenticate via OAuth, specify oauth and provide an OAuth Access Token (see the token parameter below). application: Identifies your application to Snowflake Support. insecureMode: false by default. Set to true to bypass the Online Certificate Status Protocol (OCSP) certificate revocation check. IMPORTANT: Change the default value for testing or emergency situations only. token: a token that can be used to authenticate. Should be used in conjunction with the "oauth" authenticator. client_session_keep_alive: Set to true have a heartbeat in the background every hour to keep the connection alive such that the connection session will never expire. Care should be taken in using this option as it opens up the access forever as long as the process is alive. ocspFailOpen: true by default. Set to false to make OCSP check fail closed mode. validateDefaultParameters: true by default. Set to false to disable checks on existence and privileges check for Database, Schema, Warehouse and Role when setting up the connection tracing: Specifies the logging level to be used. Set to error by default. Valid values are trace, debug, info, print, warning, error, fatal, panic. disableQueryContextCache: disables parsing of query context returned from server and resending it to server as well. Default value is false. clientConfigFile: specifies the location of the client configuration json file. In this file you can configure Easy Logging feature. disableSamlURLCheck: disables the SAML URL check. Default value is false. All other parameters are interpreted as session parameters (https://docs.snowflake.com/en/sql-reference/parameters.html). For example, the TIMESTAMP_OUTPUT_FORMAT session parameter can be set by adding: A complete connection string looks similar to the following: Session-level parameters can also be set by using the SQL command "ALTER SESSION" (https://docs.snowflake.com/en/sql-reference/sql/alter-session.html). Alternatively, use OpenWithConfig() function to create a database handle with the specified Config. # Connection Config You can also connect to your warehouse using the connection config. The dbSql library states that when you want to take advantage of driver-specific connection features that aren’t available in a connection string. Each driver supports its own set of connection properties, often providing ways to customize the connection request specific to the DBMS For example: If you are using this method, you dont need to pass a driver name to specify the driver type in which you are looking to connect. Since the driver name is not needed, you can optionally bypass driver registration on startup. To do this, set `GOSNOWFLAKE_SKIP_REGISTERATION` in your environment. This is useful you wish to register multiple verions of the driver. Note: GOSNOWFLAKE_SKIP_REGISTERATION should not be used if sql.Open() is used as the method to connect to the server, as sql.Open will require registration so it can map the driver name to the driver type, which in this case is "snowflake" and SnowflakeDriver{}. You can load the connnection configuration with .toml file format. With two environment variables SNOWFLAKE_HOME(connections.toml file directory) SNOWFLAKE_DEFAULT_CONNECTION_NAME(DSN name), the driver will search the config file and load the connection. You can find how to use this connection way at ./cmd/tomlfileconnection or Snowflake doc: https://docs.snowflake.com/en/developer-guide/snowflake-cli-v2/connecting/specify-credentials The Go Snowflake Driver honors the environment variables HTTP_PROXY, HTTPS_PROXY and NO_PROXY for the forward proxy setting. NO_PROXY specifies which hostname endings should be allowed to bypass the proxy server, e.g. no_proxy=.amazonaws.com means that Amazon S3 access does not need to go through the proxy. NO_PROXY does not support wildcards. Each value specified should be one of the following: The end of a hostname (or a complete hostname), for example: ".amazonaws.com" or "xy12345.snowflakecomputing.com". An IP address, for example "192.196.1.15". If more than one value is specified, values should be separated by commas, for example: By default, the driver's builtin logger is exposing logrus's FieldLogger and default at INFO level. Users can use SetLogger in driver.go to set a customized logger for gosnowflake package. In order to enable debug logging for the driver, user could use SetLogLevel("debug") in SFLogger interface as shown in demo code at cmd/logger.go. To redirect the logs SFlogger.SetOutput method could do the work. A custom query tag can be set in the context. Each query run with this context will include the custom query tag as metadata that will appear in the Query Tag column in the Query History log. For example: A specific query request ID can be set in the context and will be passed through in place of the default randomized request ID. For example: If you need query ID for your query you have to use raw connection. For queries: ``` ``` For execs: ``` ``` The result of your query can be retrieved by setting the query ID in the WithFetchResultByID context. ``` ``` From 0.5.0, a signal handling responsibility has moved to the applications. If you want to cancel a query/command by Ctrl+C, add a os.Interrupt trap in context to execute methods that can take the context parameter (e.g. QueryContext, ExecContext). See cmd/selectmany.go for the full example. The Go Snowflake Driver now supports the Arrow data format for data transfers between Snowflake and the Golang client. The Arrow data format avoids extra conversions between binary and textual representations of the data. The Arrow data format can improve performance and reduce memory consumption in clients. Snowflake continues to support the JSON data format. The data format is controlled by the session-level parameter GO_QUERY_RESULT_FORMAT. To use JSON format, execute: The valid values for the parameter are: If the user attempts to set the parameter to an invalid value, an error is returned. The parameter name and the parameter value are case-insensitive. This parameter can be set only at the session level. Usage notes: The Arrow data format reduces rounding errors in floating point numbers. You might see slightly different values for floating point numbers when using Arrow format than when using JSON format. In order to take advantage of the increased precision, you must pass in the context.Context object provided by the WithHigherPrecision function when querying. Traditionally, the rows.Scan() method returned a string when a variable of types interface was passed in. Turning on the flag ENABLE_HIGHER_PRECISION via WithHigherPrecision will return the natural, expected data type as well. For some numeric data types, the driver can retrieve larger values when using the Arrow format than when using the JSON format. For example, using Arrow format allows the full range of SQL NUMERIC(38,0) values to be retrieved, while using JSON format allows only values in the range supported by the Golang int64 data type. Users should ensure that Golang variables are declared using the appropriate data type for the full range of values contained in the column. For an example, see below. When using the Arrow format, the driver supports more Golang data types and more ways to convert SQL values to those Golang data types. The table below lists the supported Snowflake SQL data types and the corresponding Golang data types. The columns are: The SQL data type. The default Golang data type that is returned when you use snowflakeRows.Scan() to read data from Arrow data format via an interface{}. The possible Golang data types that can be returned when you use snowflakeRows.Scan() to read data from Arrow data format directly. The default Golang data type that is returned when you use snowflakeRows.Scan() to read data from JSON data format via an interface{}. (All returned values are strings.) The standard Golang data type that is returned when you use snowflakeRows.Scan() to read data from JSON data format directly. Go Data Types for Scan() =================================================================================================================== | ARROW | JSON =================================================================================================================== SQL Data Type | Default Go Data Type | Supported Go Data | Default Go Data Type | Supported Go Data | for Scan() interface{} | Types for Scan() | for Scan() interface{} | Types for Scan() =================================================================================================================== BOOLEAN | bool | string | bool ------------------------------------------------------------------------------------------------------------------- VARCHAR | string | string ------------------------------------------------------------------------------------------------------------------- DOUBLE | float32, float64 [1] , [2] | string | float32, float64 ------------------------------------------------------------------------------------------------------------------- INTEGER that | int, int8, int16, int32, int64 | string | int, int8, int16, fits in int64 | [1] , [2] | | int32, int64 ------------------------------------------------------------------------------------------------------------------- INTEGER that doesn't | int, int8, int16, int32, int64, *big.Int | string | error fit in int64 | [1] , [2] , [3] , [4] | ------------------------------------------------------------------------------------------------------------------- NUMBER(P, S) | float32, float64, *big.Float | string | float32, float64 where S > 0 | [1] , [2] , [3] , [5] | ------------------------------------------------------------------------------------------------------------------- DATE | time.Time | string | time.Time ------------------------------------------------------------------------------------------------------------------- TIME | time.Time | string | time.Time ------------------------------------------------------------------------------------------------------------------- TIMESTAMP_LTZ | time.Time | string | time.Time ------------------------------------------------------------------------------------------------------------------- TIMESTAMP_NTZ | time.Time | string | time.Time ------------------------------------------------------------------------------------------------------------------- TIMESTAMP_TZ | time.Time | string | time.Time ------------------------------------------------------------------------------------------------------------------- BINARY | []byte | string | []byte ------------------------------------------------------------------------------------------------------------------- ARRAY [6] | string / array | string / array ------------------------------------------------------------------------------------------------------------------- OBJECT [6] | string / struct | string / struct ------------------------------------------------------------------------------------------------------------------- VARIANT | string | string ------------------------------------------------------------------------------------------------------------------- MAP | map | map [1] Converting from a higher precision data type to a lower precision data type via the snowflakeRows.Scan() method can lose low bits (lose precision), lose high bits (completely change the value), or result in error. [2] Attempting to convert from a higher precision data type to a lower precision data type via interface{} causes an error. [3] Higher precision data types like *big.Int and *big.Float can be accessed by querying with a context returned by WithHigherPrecision(). [4] You cannot directly Scan() into the alternative data types via snowflakeRows.Scan(), but can convert to those data types by using .Int64()/.String()/.Uint64() methods. For an example, see below. [5] You cannot directly Scan() into the alternative data types via snowflakeRows.Scan(), but can convert to those data types by using .Float32()/.String()/.Float64() methods. For an example, see below. [6] Arrays and objects can be either semistructured or structured, see more info in section below. Note: SQL NULL values are converted to Golang nil values, and vice-versa. Snowflake supports two flavours of "structured data" - semistructured and structured. Semistructured types are variants, objects and arrays without schema. When data is fetched, it's represented as strings and the client is responsible for its interpretation. Example table definition: The data not have any corresponding schema, so values in table may be slightly different. Semistuctured variants, objects and arrays are always represented as strings for scanning: When inserting, a marker indicating correct type must be used, for example: Structured types differentiate from semistructured types by having specific schema. In all rows of the table, values must conform to this schema. Example table definition: To retrieve structured objects, follow these steps: 1. Create a struct implementing sql.Scanner interface, example: a) b) Automatic scan goes through all fields in a struct and read object fields. Struct fields have to be public. Embedded structs have to be pointers. Matching name is built using struct field name with first letter lowercase. Additionally, `sf` tag can be added: - first value is always a name of a field in an SQL object - additionally `ignore` parameter can be passed to omit this field 2. Use WithStructuredTypesEnabled context while querying data. 3. Use it in regular scan: See StructuredObject for all available operations including null support, embedding nested structs, etc. Retrieving array of simple types works exactly the same like normal values - using Scan function. You can use WithMapValuesNullable and WithArrayValuesNullable contexts to handle null values in, respectively, maps and arrays of simple types in the database. In that case, sql null types will be used: If you want to scan array of structs, you have to use a helper function ScanArrayOfScanners: Retrieving structured maps is very similar to retrieving arrays: To bind structured objects use: 1. Create a type which implements a StructuredObjectWriter interface, example: a) b) 2. Use an instance as regular bind. 3. If you need to bind nil value, use special syntax: Binding structured arrays are like any other parameter. The only difference is - if you want to insert empty array (not nil but empty), you have to use: The following example shows how to retrieve very large values using the math/big package. This example retrieves a large INTEGER value to an interface and then extracts a big.Int value from that interface. If the value fits into an int64, then the code also copies the value to a variable of type int64. Note that a context that enables higher precision must be passed in with the query. If the variable named "rows" is known to contain a big.Int, then you can use the following instead of scanning into an interface and then converting to a big.Int: If the variable named "rows" contains a big.Int, then each of the following fails: Similar code and rules also apply to big.Float values. If you are not sure what data type will be returned, you can use code similar to the following to check the data type of the returned value: You can retrieve data in a columnar format similar to the format a server returns, without transposing them to rows. When working with the arrow columnar format in go driver, ArrowBatch structs are used. These are structs mostly corresponding to data chunks received from the backend. They allow for access to specific arrow.Record structs. An ArrowBatch can exist in a state where the underlying data has not yet been loaded. The data is downloaded and translated only on demand. Translation options are retrieved from a context.Context interface, which is either passed from query context or set by the user using WithContext(ctx) method. In order to access them you must use `WithArrowBatches` context, similar to the following: This returns []*ArrowBatch. ArrowBatch functions: GetRowCount(): Returns the number of rows in the ArrowBatch. Note that this returns 0 if the data has not yet been loaded, irrespective of it’s actual size. WithContext(ctx context.Context): Sets the context of the ArrowBatch to the one provided. Note that the context will not retroactively apply to data that has already been downloaded. For example: will produce the same result in records1 and records2, irrespective of the newly provided ctx. Context worth noting are: -WithArrowBatchesTimestampOption -WithHigherPrecision -WithArrowBatchesUtf8Validation described in more detail later. Fetch(): Returns the underlying records as *[]arrow.Record. When this function is called, the ArrowBatch checks whether the underlying data has already been loaded, and downloads it if not. Limitations: How to handle timestamps in Arrow batches: Snowflake returns timestamps natively (from backend to driver) in multiple formats. The Arrow timestamp is an 8-byte data type, which is insufficient to handle the larger date and time ranges used by Snowflake. Also, Snowflake supports 0-9 (nanosecond) digit precision for seconds, while Arrow supports only 3 (millisecond), 6 (microsecond), an 9 (nanosecond) precision. Consequently, Snowflake uses a custom timestamp format in Arrow, which differs on timestamp type and precision. If you want to use timestamps in Arrow batches, you have two options: How to handle invalid UTF-8 characters in Arrow batches: Snowflake previously allowed users to upload data with invalid UTF-8 characters. Consequently, Arrow records containing string columns in Snowflake could include these invalid UTF-8 characters. However, according to the Arrow specifications (https://arrow.apache.org/docs/cpp/api/datatype.html and https://github.com/apache/arrow/blob/a03d957b5b8d0425f9d5b6c98b6ee1efa56a1248/go/arrow/datatype.go#L73-L74), Arrow string columns should only contain UTF-8 characters. To address this issue and prevent potential downstream disruptions, the context WithArrowBatchesUtf8Validation, is introduced. When enabled, this feature iterates through all values in string columns, identifying and replacing any invalid characters with `�`. This ensures that Arrow records conform to the UTF-8 standards, preventing validation failures in downstream services like the Rust Arrow library that impose strict validation checks. How to handle higher precision in Arrow batches: To preserve BigDecimal values within Arrow batches, use WithHigherPrecision. This offers two main benefits: it helps avoid precision loss and defers the conversion to upstream services. Alternatively, without this setting, all non-zero scale numbers will be converted to float64, potentially resulting in loss of precision. Zero-scale numbers (DECIMAL256, DECIMAL128) will be converted to int64, which could lead to overflow. Binding allows a SQL statement to use a value that is stored in a Golang variable. Without binding, a SQL statement specifies values by specifying literals inside the statement. For example, the following statement uses the literal value “42“ in an UPDATE statement: With binding, you can execute a SQL statement that uses a value that is inside a variable. For example: The “?“ inside the “VALUES“ clause specifies that the SQL statement uses the value from a variable. Binding data that involves time zones can require special handling. For details, see the section titled "Timestamps with Time Zones". Version 1.6.23 (and later) of the driver takes advantage of sql.Null types which enables the proper handling of null parameters inside function calls, i.e.: The timestamp nullability had to be achieved by wrapping the sql.NullTime type as the Snowflake provides several date and time types which are mapped to single Go time.Time type: Version 1.3.9 (and later) of the Go Snowflake Driver supports the ability to bind an array variable to a parameter in a SQL INSERT statement. You can use this technique to insert multiple rows in a single batch. As an example, the following code inserts rows into a table that contains integer, float, boolean, and string columns. The example binds arrays to the parameters in the INSERT statement. If the array contains SQL NULL values, use slice []interface{}, which allows Golang nil values. This feature is available in version 1.6.12 (and later) of the driver. For example, For slices []interface{} containing time.Time values, a binding parameter flag is required for the preceding array variable in the Array() function. This feature is available in version 1.6.13 (and later) of the driver. For example, Note: For alternative ways to load data into the Snowflake database (including bulk loading using the COPY command), see Loading Data into Snowflake (https://docs.snowflake.com/en/user-guide-data-load.html). When you use array binding to insert a large number of values, the driver can improve performance by streaming the data (without creating files on the local machine) to a temporary stage for ingestion. The driver automatically does this when the number of values exceeds a threshold (no changes are needed to user code). In order for the driver to send the data to a temporary stage, the user must have the following privilege on the schema: If the user does not have this privilege, the driver falls back to sending the data with the query to the Snowflake database. In addition, the current database and schema for the session must be set. If these are not set, the CREATE TEMPORARY STAGE command executed by the driver can fail with the following error: For alternative ways to load data into the Snowflake database (including bulk loading using the COPY command), see Loading Data into Snowflake (https://docs.snowflake.com/en/user-guide-data-load.html). Go's database/sql package supports the ability to bind a parameter in a SQL statement to a time.Time variable. However, when the client binds data to send to the server, the driver cannot determine the correct Snowflake date/timestamp data type to associate with the binding parameter. For example: To resolve this issue, a binding parameter flag is introduced that associates any subsequent time.Time type to the DATE, TIME, TIMESTAMP_LTZ, TIMESTAMP_NTZ or BINARY data type. The above example could be rewritten as follows: The driver fetches TIMESTAMP_TZ (timestamp with time zone) data using the offset-based Location types, which represent a collection of time offsets in use in a geographical area, such as CET (Central European Time) or UTC (Coordinated Universal Time). The offset-based Location data is generated and cached when a Go Snowflake Driver application starts, and if the given offset is not in the cache, it is generated dynamically. Currently, Snowflake does not support the name-based Location types (e.g. "America/Los_Angeles"). For more information about Location types, see the Go documentation for https://golang.org/pkg/time/#Location. Internally, this feature leverages the []byte data type. As a result, BINARY data cannot be bound without the binding parameter flag. In the following example, sf is an alias for the gosnowflake package: The driver directly downloads a result set from the cloud storage if the size is large. It is required to shift workloads from the Snowflake database to the clients for scale. The download takes place by goroutine named "Chunk Downloader" asynchronously so that the driver can fetch the next result set while the application can consume the current result set. The application may change the number of result set chunk downloader if required. Note this does not help reduce memory footprint by itself. Consider Custom JSON Decoder. Custom JSON Decoder for Parsing Result Set (Experimental) The application may have the driver use a custom JSON decoder that incrementally parses the result set as follows. This option will reduce the memory footprint to half or even quarter, but it can significantly degrade the performance depending on the environment. The test cases running on Travis Ubuntu box show five times less memory footprint while four times slower. Be cautious when using the option. The Go Snowflake Driver supports JWT (JSON Web Token) authentication. To enable this feature, construct the DSN with fields "authenticator=SNOWFLAKE_JWT&privateKey=<your_private_key>", or using a Config structure specifying: The <your_private_key> should be a base64 URL encoded PKCS8 rsa private key string. One way to encode a byte slice to URL base 64 URL format is through the base64.URLEncoding.EncodeToString() function. On the server side, you can alter the public key with the SQL command: The <your_public_key> should be a base64 Standard encoded PKI public key string. One way to encode a byte slice to base 64 Standard format is through the base64.StdEncoding.EncodeToString() function. To generate the valid key pair, you can execute the following commands in the shell: Note: As of February 2020, Golang's official library does not support passcode-encrypted PKCS8 private key. For security purposes, Snowflake highly recommends that you store the passcode-encrypted private key on the disk and decrypt the key in your application using a library you trust. JWT tokens are recreated on each retry and they are valid (`exp` claim) for `jwtTimeout` seconds. Each retry timeout is configured by `jwtClientTimeout`. Retries are limited by total time of `loginTimeout`. The driver allows to authenticate using the external browser. When a connection is created, the driver will open the browser window and ask the user to sign in. To enable this feature, construct the DSN with field "authenticator=EXTERNALBROWSER" or using a Config structure with following Authenticator specified: The external browser authentication implements timeout mechanism. This prevents the driver from hanging interminably when browser window was closed, or not responding. Timeout defaults to 120s and can be changed through setting DSN field "externalBrowserTimeout=240" (time in seconds) or using a Config structure with following ExternalBrowserTimeout specified: This feature is available in version 1.3.8 or later of the driver. By default, Snowflake returns an error for queries issued with multiple statements. This restriction helps protect against SQL Injection attacks (https://en.wikipedia.org/wiki/SQL_injection). The multi-statement feature allows users skip this restriction and execute multiple SQL statements through a single Golang function call. However, this opens up the possibility for SQL injection, so it should be used carefully. The risk can be reduced by specifying the exact number of statements to be executed, which makes it more difficult to inject a statement by appending it. More details are below. The Go Snowflake Driver provides two functions that can execute multiple SQL statements in a single call: To compose a multi-statement query, simply create a string that contains all the queries, separated by semicolons, in the order in which the statements should be executed. To protect against SQL Injection attacks while using the multi-statement feature, pass a Context that specifies the number of statements in the string. For example: When multiple queries are executed by a single call to QueryContext(), multiple result sets are returned. After you process the first result set, get the next result set (for the next SQL statement) by calling NextResultSet(). The following pseudo-code shows how to process multiple result sets: The function db.ExecContext() returns a single result, which is the sum of the number of rows changed by each individual statement. For example, if your multi-statement query executed two UPDATE statements, each of which updated 10 rows, then the result returned would be 20. Individual row counts for individual statements are not available. The following code shows how to retrieve the result of a multi-statement query executed through db.ExecContext(): Note: Because a multi-statement ExecContext() returns a single value, you cannot detect offsetting errors. For example, suppose you expected the return value to be 20 because you expected each UPDATE statement to update 10 rows. If one UPDATE statement updated 15 rows and the other UPDATE statement updated only 5 rows, the total would still be 20. You would see no indication that the UPDATES had not functioned as expected. The ExecContext() function does not return an error if passed a query (e.g. a SELECT statement). However, it still returns only a single value, not a result set, so using it to execute queries (or a mix of queries and non-query statements) is impractical. The QueryContext() function does not return an error if passed non-query statements (e.g. DML). The function returns a result set for each statement, whether or not the statement is a query. For each non-query statement, the result set contains a single row that contains a single column; the value is the number of rows changed by the statement. If you want to execute a mix of query and non-query statements (e.g. a mix of SELECT and DML statements) in a multi-statement query, use QueryContext(). You can retrieve the result sets for the queries, and you can retrieve or ignore the row counts for the non-query statements. Note: PUT statements are not supported for multi-statement queries. If a SQL statement passed to ExecQuery() or QueryContext() fails to compile or execute, that statement is aborted, and subsequent statements are not executed. Any statements prior to the aborted statement are unaffected. For example, if the statements below are run as one multi-statement query, the multi-statement query fails on the third statement, and an exception is thrown. If you then query the contents of the table named "test", the values 1 and 2 would be present. When using the QueryContext() and ExecContext() functions, golang code can check for errors the usual way. For example: Preparing statements and using bind variables are also not supported for multi-statement queries. The Go Snowflake Driver supports asynchronous execution of SQL statements. Asynchronous execution allows you to start executing a statement and then retrieve the result later without being blocked while waiting. While waiting for the result of a SQL statement, you can perform other tasks, including executing other SQL statements. Most of the steps to execute an asynchronous query are the same as the steps to execute a synchronous query. However, there is an additional step, which is that you must call the WithAsyncMode() function to update your Context object to specify that asynchronous mode is enabled. In the code below, the call to "WithAsyncMode()" is specific to asynchronous mode. The rest of the code is compatible with both asynchronous mode and synchronous mode. The function db.QueryContext() returns an object of type snowflakeRows regardless of whether the query is synchronous or asynchronous. However: The call to the Next() function of snowflakeRows is always synchronous (i.e. blocking). If the query has not yet completed and the snowflakeRows object (named "rows" in this example) has not been filled in yet, then rows.Next() waits until the result set has been filled in. More generally, calls to any Golang SQL API function implemented in snowflakeRows or snowflakeResult are blocking calls, and wait if results are not yet available. (Examples of other synchronous calls include: snowflakeRows.Err(), snowflakeRows.Columns(), snowflakeRows.columnTypes(), snowflakeRows.Scan(), and snowflakeResult.RowsAffected().) Because the example code above executes only one query and no other activity, there is no significant difference in behavior between asynchronous and synchronous behavior. The differences become significant if, for example, you want to perform some other activity after the query starts and before it completes. The example code below starts a query, which run in the background, and then retrieves the results later. This example uses small SELECT statements that do not retrieve enough data to require asynchronous handling. However, the technique works for larger data sets, and for situations where the programmer might want to do other work after starting the queries and before retrieving the results. For a more elaborative example please see cmd/async/async.go The Go Snowflake Driver supports the PUT and GET commands. The PUT command copies a file from a local computer (the computer where the Golang client is running) to a stage on the cloud platform. The GET command copies data files from a stage on the cloud platform to a local computer. See the following for information on the syntax and supported parameters: Using PUT: The following example shows how to run a PUT command by passing a string to the db.Query() function: "<local_file>" should include the file path as well as the name. Snowflake recommends using an absolute path rather than a relative path. For example: Different client platforms (e.g. linux, Windows) have different path name conventions. Ensure that you specify path names appropriately. This is particularly important on Windows, which uses the backslash character as both an escape character and as a separator in path names. To send information from a stream (rather than a file) use code similar to the code below. (The ReplaceAll() function is needed on Windows to handle backslashes in the path to the file.) Note: PUT statements are not supported for multi-statement queries. Using GET: The following example shows how to run a GET command by passing a string to the db.Query() function: "<local_file>" should include the file path as well as the name. Snowflake recommends using an absolute path rather than a relative path. For example: To download a file into an in-memory stream (rather than a file) use code similar to the code below. Note: GET statements are not supported for multi-statement queries. Specifying temporary directory for encryption and compression: Putting and getting requires compression and/or encryption, which is done in the OS temporary directory. If you cannot use default temporary directory for your OS or you want to specify it yourself, you can use "tmpDirPath" DSN parameter. Remember, to encode slashes. Example: Using custom configuration for PUT/GET: If you want to override some default configuration options, you can use `WithFileTransferOptions` context. There are multiple config parameters including progress bars or compression.
Package uniseg implements Unicode Text Segmentation, Unicode Line Breaking, and string width calculation for monospace fonts. Unicode Text Segmentation conforms to Unicode Standard Annex #29 (https://unicode.org/reports/tr29/) and Unicode Line Breaking conforms to Unicode Standard Annex #14 (https://unicode.org/reports/tr14/). In short, using this package, you can split a string into grapheme clusters (what people would usually refer to as a "character"), into words, and into sentences. Or, in its simplest case, this package allows you to count the number of characters in a string, especially when it contains complex characters such as emojis, combining characters, or characters from Asian, Arabic, Hebrew, or other languages. Additionally, you can use it to implement line breaking (or "word wrapping"), that is, to determine where text can be broken over to the next line when the width of the line is not big enough to fit the entire text. Finally, you can use it to calculate the display width of a string for monospace fonts. If you just want to count the number of characters in a string, you can use GraphemeClusterCount. If you want to determine the display width of a string, you can use StringWidth. If you want to iterate over a string, you can use Step, StepString, or the Graphemes class (more convenient but less performant). This will provide you with all information: grapheme clusters, word boundaries, sentence boundaries, line breaks, and monospace character widths. The specialized functions FirstGraphemeCluster, FirstGraphemeClusterInString, FirstWord, FirstWordInString, FirstSentence, and FirstSentenceInString can be used if only one type of information is needed. Consider the rainbow flag emoji: 🏳️🌈. On most modern systems, it appears as one character. But its string representation actually has 14 bytes, so counting bytes (or using len("🏳️🌈")) will not work as expected. Counting runes won't, either: The flag has 4 Unicode code points, thus 4 runes. The stdlib function utf8.RuneCountInString("🏳️🌈") and len([]rune("🏳️🌈")) will both return 4. The GraphemeClusterCount function will return 1 for the rainbow flag emoji. The Graphemes class and a variety of functions in this package will allow you to split strings into its grapheme clusters. Word boundaries are used in a number of different contexts. The most familiar ones are selection (double-click mouse selection), cursor movement ("move to next word" control-arrow keys), and the dialog option "Whole Word Search" for search and replace. This package provides methods for determining word boundaries. Sentence boundaries are often used for triple-click or some other method of selecting or iterating through blocks of text that are larger than single words. They are also used to determine whether words occur within the same sentence in database queries. This package provides methods for determining sentence boundaries. Line breaking, also known as word wrapping, is the process of breaking a section of text into lines such that it will fit in the available width of a page, window or other display area. This package provides methods to determine the positions in a string where a line must be broken, may be broken, or must not be broken. Monospace width, as referred to in this package, is the width of a string in a monospace font. This is commonly used in terminal user interfaces or text displays or editors that don't support proportional fonts. A width of 1 corresponds to a single character cell. The C function wcswidth() and its implementation in other programming languages is in widespread use for the same purpose. However, there is no standard for the calculation of such widths, and this package differs from wcswidth() in a number of ways, presumably to generate more visually pleasing results. To start, we assume that every code point has a width of 1, with the following exceptions: For Hangul grapheme clusters composed of conjoining Jamo and for Regional Indicators (flags), all code points except the first one have a width of 0. For grapheme clusters starting with an Extended Pictographic, any additional code point will force a total width of 2, except if the Variation Selector-15 (U+FE0E) is included, in which case the total width is always 1. Grapheme clusters ending with Variation Selector-16 (U+FE0F) have a width of 2. Note that whether these widths appear correct depends on your application's render engine, to which extent it conforms to the Unicode Standard, and its choice of font.
Package shard implements the sharding call strategy
The tomb package offers a conventional API for clean goroutine termination. A Tomb tracks the lifecycle of a goroutine as alive, dying or dead, and the reason for its death. The zero value of a Tomb assumes that a goroutine is about to be created or already alive. Once Kill or Killf is called with an argument that informs the reason for death, the goroutine is in a dying state and is expected to terminate soon. Right before the goroutine function or method returns, Done must be called to inform that the goroutine is indeed dead and about to stop running. A Tomb exposes Dying and Dead channels. These channels are closed when the Tomb state changes in the respective way. They enable explicit blocking until the state changes, and also to selectively unblock select statements accordingly. When the tomb state changes to dying and there's still logic going on within the goroutine, nested functions and methods may choose to return ErrDying as their error value, as this error won't alter the tomb state if provided to the Kill method. This is a convenient way to follow standard Go practices in the context of a dying tomb. For background and a detailed example, see the following blog post: For a more complex code snippet demonstrating the use of multiple goroutines with a single Tomb, see:
This example shows how to instrument sql queries in order to display the time that they consume package main import ( ) // Hooks satisfies the sqlhook.Hooks interface type Hooks struct {} // Before hook will print the query with it's args and return the context with the timestamp // After hook will get the timestamp registered on the Before hook and print the elapsed time /* Output should look like: > CREATE TABLE t (id INTEGER, text VARCHAR(16)) []. took: 121.238µs > INSERT into t (text) VALUES(?), (?) ["foo" "bar"]. took: 36.364µs > SELECT id, text FROM t []. took: 4.653µs */
A Go package to intelligently and flexibly pool among multiple hosts from your Go application. Host selection can operate in round robin or epsilon greedy mode, and unresponsive hosts are avoided. A good overview of Epsilon Greedy is here http://stevehanov.ca/blog/index.php?id=132
Package goworker is a Resque-compatible, Go-based background worker. It allows you to push jobs into a queue using an expressive language like Ruby while harnessing the efficiency and concurrency of Go to minimize job latency and cost. goworker workers can run alongside Ruby Resque clients so that you can keep all but your most resource-intensive jobs in Ruby. To create a worker, write a function matching the signature and register it using Here is a simple worker that prints its arguments: To create workers that share a database pool or other resources, use a closure to share variables. goworker worker functions receive the queue they are serving and a slice of interfaces. To use them as parameters to other functions, use Go type assertions to convert them into usable types. For testing, it is helpful to use the redis-cli program to insert jobs onto the Redis queue: will insert 100 jobs for the MyClass worker onto the myqueue queue. It is equivalent to: After building your workers, you will have an executable that you can run which will automatically poll a Redis server and call your workers as jobs arrive. There are several flags which control the operation of the goworker client. -queues="comma,delimited,queues" — This is the only required flag. The recommended practice is to separate your Resque workers from your goworkers with different queues. Otherwise, Resque worker classes that have no goworker analog will cause the goworker process to fail the jobs. Because of this, there is no default queue, nor is there a way to select all queues (à la Resque's * queue). Queues are processed in the order they are specififed. If you have multiple queues you can assign them weights. A queue with a weight of 2 will be checked twice as often as a queue with a weight of 1: -queues='high=2,low=1'. -interval=5.0 — Specifies the wait period between polling if no job was in the queue the last time one was requested. -concurrency=25 — Specifies the number of concurrently executing workers. This number can be as low as 1 or rather comfortably as high as 100,000, and should be tuned to your workflow and the availability of outside resources. -connections=2 — Specifies the maximum number of Redis connections that goworker will consume between the poller and all workers. There is not much performance gain over two and a slight penalty when using only one. This is configurable in case you need to keep connection counts low for cloud Redis providers who limit plans on maxclients. -uri=redis://localhost:6379/ — Specifies the URI of the Redis database from which goworker polls for jobs. Accepts URIs of the format redis://user:pass@host:port/db or unix:///path/to/redis.sock. The flag may also be set by the environment variable $($REDIS_PROVIDER) or $REDIS_URL. E.g. set $REDIS_PROVIDER to REDISTOGO_URL on Heroku to let the Redis To Go add-on configure the Redis database. -namespace=resque: — Specifies the namespace from which goworker retrieves jobs and stores stats on workers. -exit-on-complete=false — Exits goworker when there are no jobs left in the queue. This is helpful in conjunction with the time command to benchmark different configurations. -use-number=false — Uses json.Number when decoding numbers in the job payloads. This will avoid issues that occur when goworker and the json package decode large numbers as floats, which then get encoded in scientific notation, losing pecision. This will default to true soon. You can also configure your own flags for use within your workers. Be sure to set them before calling goworker.Main(). It is okay to call flags.Parse() before calling goworker.Main() if you need to do additional processing on your flags. To stop goworker, send a QUIT, TERM, or INT signal to the process. This will immediately stop job polling. There can be up to $CONCURRENCY jobs currently running, which will continue to run until they are finished. Like Resque, goworker makes no guarantees about the safety of jobs in the event of process shutdown. Workers must be both idempotent and tolerant to loss of the job in the event of failure. If the process is killed with a KILL or by a system failure, there may be one job that is currently in the poller's buffer that will be lost without any representation in either the queue or the worker variable. If you are running Goworker on a system like Heroku, which sends a TERM to signal a process that it needs to stop, ten seconds later sends a KILL to force the process to stop, your jobs must finish within 10 seconds or they may be lost. Jobs will be recoverable from the Redis database under as a JSON object with keys queue, run_at, and payload, but the process is manual. Additionally, there is no guarantee that the job in Redis under the worker key has not finished, if the process is killed before goworker can flush the update to Redis.
Package blockchain implements Decred block handling and chain selection rules. The Decred block handling and chain selection rules are an integral, and quite likely the most important, part of decred. At its core, Decred is a distributed consensus of which blocks are valid and which ones will comprise the main block chain (public ledger) that ultimately determines accepted transactions, so it is extremely important that fully validating nodes agree on all rules. At a high level, this package provides support for inserting new blocks into the block chain according to the aforementioned rules. It includes functionality such as rejecting duplicate blocks, ensuring blocks and transactions follow all rules, and best chain selection along with reorganization. Since this package does not deal with other Decred specifics such as network communication or wallets, it provides a notification system which gives the caller a high level of flexibility in how they want to react to certain events such as newly connected main chain blocks which might result in wallet updates. Before a block is allowed into the block chain, it must go through an intensive series of validation rules. The following list serves as a general outline of those rules to provide some intuition into what is going on under the hood, but is by no means exhaustive: Errors returned by this package are either the raw errors provided by underlying calls or of type blockchain.RuleError. This allows the caller to differentiate between unexpected errors, such as database errors, versus errors due to rule violations through type assertions. In addition, callers can programmatically determine the specific rule violation by examining the ErrorCode field of the type asserted blockchain.RuleError.
Package monkit is a flexible code instrumenting and data collection library. I'm going to try and sell you as fast as I can on this library. Example usage We've got tools that capture distribution information (including quantiles) about int64, float64, and bool types. We have tools that capture data about events (we've got meters for deltas, rates, etc). We have rich tools for capturing information about tasks and functions, and literally anything that can generate a name and a number. Almost just as importantly, the amount of boilerplate and code you have to write to get these features is very minimal. Data that's hard to measure probably won't get measured. This data can be collected and sent to Graphite (http://graphite.wikidot.com/) or any other time-series database. Here's a selection of live stats from one of our storage nodes: This library generates call graphs of your live process for you. These call graphs aren't created through sampling. They're full pictures of all of the interesting functions you've annotated, along with quantile information about their successes, failures, how often they panic, return an error (if so instrumented), how many are currently running, etc. The data can be returned in dot format, in json, in text, and can be about just the functions that are currently executing, or all the functions the monitoring system has ever seen. Here's another example of one of our production nodes: https://raw.githubusercontent.com/spacemonkeygo/monkit/master/images/callgraph2.png This library generates trace graphs of your live process for you directly, without requiring standing up some tracing system such as Zipkin (though you can do that too). Inspired by Google's Dapper (http://research.google.com/pubs/pub36356.html) and Twitter's Zipkin (http://zipkin.io), we have process-internal trace graphs, triggerable by a number of different methods. You get this trace information for free whenever you use Go contexts (https://blog.golang.org/context) and function monitoring. The output formats are svg and json. Additionally, the library supports trace observation plugins, and we've written a plugin that sends this data to Zipkin (http://github.com/spacemonkeygo/monkit-zipkin). https://raw.githubusercontent.com/spacemonkeygo/monkit/master/images/trace.png Before our crazy Go rewrite of everything (https://www.spacemonkey.com/blog/posts/go-space-monkey) (and before we had even seen Google's Dapper paper), we were a Python shop, and all of our "interesting" functions were decorated with a helper that collected timing information and sent it to Graphite. When we transliterated to Go, we wanted to preserve that functionality, so the first version of our monitoring package was born. Over time it started to get janky, especially as we found Zipkin and started adding tracing functionality to it. We rewrote all of our Go code to use Google contexts, and then realized we could get call graph information. We decided a refactor and then an all-out rethinking of our monitoring package was best, and so now we have this library. Sometimes you really want callstack contextual information without having to pass arguments through everything on the call stack. In other languages, many people implement this with thread-local storage. Example: let's say you have written a big system that responds to user requests. All of your libraries log using your log library. During initial development everything is easy to debug, since there's low user load, but now you've scaled and there's OVER TEN USERS and it's kind of hard to tell what log lines were caused by what. Wouldn't it be nice to add request ids to all of the log lines kicked off by that request? Then you could grep for all log lines caused by a specific request id. Geez, it would suck to have to pass all contextual debugging information through all of your callsites. Google solved this problem by always passing a context.Context interface through from call to call. A Context is basically just a mapping of arbitrary keys to arbitrary values that users can add new values for. This way if you decide to add a request context, you can add it to your Context and then all callsites that decend from that place will have the new data in their contexts. It is admittedly very verbose to add contexts to every function call. Painfully so. I hope to write more about it in the future, but Google also wrote up their thoughts about it (https://blog.golang.org/context), which you can go read. For now, just swallow your disgust and let's keep moving. Let's make a super simple Varnish (https://www.varnish-cache.org/) clone. Open up gedit! (Okay just kidding, open whatever text editor you want.) For this motivating program, we won't even add the caching, though there's comments for where to add it if you'd like. For now, let's just make a barebones system that will proxy HTTP requests. We'll call it VLite, but maybe we should call it VReallyLite. Run and build this and open localhost:8080 in your browser. If you use the default proxy target, it should inform you that the world hasn't been destroyed yet. The first thing you'll want to do is add the small amount of boilerplate to make the instrumentation we're going to add to your process observable later. Import the basic monkit packages: and then register environmental statistics and kick off a goroutine in your main method to serve debug requests: Rebuild, and then check out localhost:9000/stats (or localhost:9000/stats/json, if you prefer) in your browser! Remember what I said about Google's contexts (https://blog.golang.org/context)? It might seem a bit overkill for such a small project, but it's time to add them. To help out here, I've created a library that constructs contexts for you for incoming HTTP requests. Nothing that's about to happen requires my webhelp library (https://godoc.org/github.com/jtolds/webhelp), but here is the code now refactored to receive and pass contexts through our two per-request calls. You can create a new context for a request however you want. One reason to use something like webhelp is that the cancelation feature of Contexts is hooked up to the HTTP request getting canceled. Let's start to get statistics about how many requests we receive! First, this package (main) will need to get a monitoring Scope. Add this global definition right after all your imports, much like you'd create a logger with many logging libraries: Now, make the error return value of HandleHTTP named (so, (err error)), and add this defer line as the very first instruction of HandleHTTP: Let's also add the same line (albeit modified for the lack of error) to Proxy, replacing &err with nil: You should now have something like: We'll unpack what's going on here, but for now: For this new funcs dataset, if you want a graph, you can download a dot graph at localhost:9000/funcs/dot and json information from localhost:9000/funcs/json. You should see something like: with a similar report for the Proxy method, or a graph like: https://raw.githubusercontent.com/spacemonkeygo/monkit/master/images/handlehttp.png This data reports the overall callgraph of execution for known traces, along with how many of each function are currently running, the most running concurrently (the highwater), how many were successful along with quantile timing information, how many errors there were (with quantile timing information if applicable), and how many panics there were. Since the Proxy method isn't capturing a returned err value, and since HandleHTTP always returns nil, this example won't ever have failures. If you're wondering about the success count being higher than you expected, keep in mind your browser probably requested a favicon.ico. Cool, eh? How it works is an interesting line of code - there's three function calls. If you look at the Go spec, all of the function calls will run at the time the function starts except for the very last one. The first function call, mon.Task(), creates or looks up a wrapper around a Func. You could get this yourself by requesting mon.Func() inside of the appropriate function or mon.FuncNamed(). Both mon.Task() and mon.Func() are inspecting runtime.Caller to determine the name of the function. Because this is a heavy operation, you can actually store the result of mon.Task() and reuse it somehow else if you prefer, so instead of you could instead use which is more performant every time after the first time. runtime.Caller only gets called once. Careful! Don't use the same myFuncMon in different functions unless you want to screw up your statistics! The second function call starts all the various stop watches and bookkeeping to keep track of the function. It also mutates the context pointer it's given to extend the context with information about what current span (in Zipkin parlance) is active. Notably, you *can* pass nil for the context if you really don't want a context. You just lose callgraph information. The last function call stops all the stop watches ad makes a note of any observed errors or panics (it repanics after observing them). Turns out, we don't even need to change our program anymore to get rich tracing information! Open your browser and go to localhost:9000/trace/svg?regex=HandleHTTP. It won't load, and in fact, it's waiting for you to open another tab and refresh localhost:8080 again. Once you retrigger the actual application behavior, the trace regex will capture a trace starting on the first function that matches the supplied regex, and return an svg. Go back to your first tab, and you should see a relatively uninteresting but super promising svg. Let's make the trace more interesting. Add a to your HandleHTTP method, rebuild, and restart. Load localhost:8080, then start a new request to your trace URL, then reload localhost:8080 again. Flip back to your trace, and you should see that the Proxy method only takes a portion of the time of HandleHTTP! https://cdn.rawgit.com/spacemonkeygo/monkit/master/images/trace.svg There's multiple ways to select a trace. You can select by regex using the preselect method (default), which first evaluates the regex on all known functions for sanity checking. Sometimes, however, the function you want to trace may not yet be known to monkit, in which case you'll want to turn preselection off. You may have a bad regex, or you may be in this case if you get the error "Bad Request: regex preselect matches 0 functions." Another way to select a trace is by providing a trace id, which we'll get to next! Make sure to check out what the addition of the time.Sleep call did to the other reports. It's easy to write plugins for monkit! Check out our first one that exports data to Zipkin (http://zipkin.io/)'s Scribe API: https://github.com/spacemonkeygo/monkit-zipkin We plan to have more (for HTrace, OpenTracing, etc, etc), soon!
Package skipper provides an HTTP routing library with flexible configuration as well as a runtime update of the routing rules. Skipper works as an HTTP reverse proxy that is responsible for mapping incoming requests to multiple HTTP backend services, based on routes that are selected by the request attributes. At the same time, both the requests and the responses can be augmented by a filter chain that is specifically defined for each route. Optionally, it can provide circuit breaker mechanism individually for each backend host. Skipper can load and update the route definitions from multiple data sources without being restarted. It provides a default executable command with a few built-in filters, however, its primary use case is to be extended with custom filters, predicates or data sources. For further information read 'Extending Skipper'. Skipper took the core design and inspiration from Vulcand: https://github.com/mailgun/vulcand. Skipper is 'go get' compatible. If needed, create a 'go workspace' first: Get the Skipper packages: Create a file with a route: Optionally, verify the syntax of the file: Start Skipper and make an HTTP request: The core of Skipper's request processing is implemented by a reverse proxy in the 'proxy' package. The proxy receives the incoming request, forwards it to the routing engine in order to receive the most specific matching route. When a route matches, the request is forwarded to all filters defined by it. The filters can modify the request or execute any kind of program logic. Once the request has been processed by all the filters, it is forwarded to the backend endpoint of the route. The response from the backend goes once again through all the filters in reverse order. Finally, it is mapped as the response of the original incoming request. Besides the default proxying mechanism, it is possible to define routes without a real network backend endpoint. One of these cases is called a 'shunt' backend, in which case one of the filters needs to handle the request providing its own response (e.g. the 'static' filter). Actually, filters themselves can instruct the request flow to shunt by calling the Serve(*http.Response) method of the filter context. Another case of a route without a network backend is the 'loopback'. A loopback route can be used to match a request, modified by filters, against the lookup tree with different conditions and then execute a different route. One example scenario can be to use a single route as an entry point to execute some calculation to get an A/B testing decision and then matching the updated request metadata for the actual destination route. This way the calculation can be executed for only those requests that don't contain information about a previously calculated decision. For further details, see the 'proxy' and 'filters' package documentation. Finding a request's route happens by matching the request attributes to the conditions in the route's definitions. Such definitions may have the following conditions: - method - path (optionally with wildcards) - path regular expressions - host regular expressions - headers - header regular expressions It is also possible to create custom predicates with any other matching criteria. The relation between the conditions in a route definition is 'and', meaning, that a request must fulfill each condition to match a route. For further details, see the 'routing' package documentation. Filters are applied in order of definition to the request and in reverse order to the response. They are used to modify request and response attributes, such as headers, or execute background tasks, like logging. Some filters may handle the requests without proxying them to service backends. Filters, depending on their implementation, may accept/require parameters, that are set specifically to the route. For further details, see the 'filters' package documentation. Each route has one of the following backends: HTTP endpoint, shunt, loopback or dynamic. Backend endpoints can be any HTTP service. They are specified by their network address, including the protocol scheme, the domain name or the IP address, and optionally the port number: e.g. "https://www.example.org:4242". (The path and query are sent from the original request, or set by filters.) A shunt route means that Skipper handles the request alone and doesn't make requests to a backend service. In this case, it is the responsibility of one of the filters to generate the response. A loopback route executes the routing mechanism on current state of the request from the start, including the route lookup. This way it serves as a form of an internal redirect. A dynamic route means that the final target will be defined in a filter. One of the filters in the chain must set the target backend url explicitly. Route definitions consist of the following: - request matching conditions (predicates) - filter chain (optional) - backend The eskip package implements the in-memory and text representations of route definitions, including a parser. (Note to contributors: in order to stay compatible with 'go get', the generated part of the parser is stored in the repository. When changing the grammar, 'go generate' needs to be executed explicitly to update the parser.) For further details, see the 'eskip' package documentation Skipper has filter implementations of basic auth and OAuth2. It can be integrated with tokeninfo based OAuth2 providers. For details, see: https://godoc.org/github.com/zalando/skipper/filters/auth. Skipper's route definitions of Skipper are loaded from one or more data sources. It can receive incremental updates from those data sources at runtime. It provides three different data clients: - Kubernetes: Skipper can be used as part of a Kubernetes Ingress Controller implementation together with https://github.com/zalando-incubator/kube-ingress-aws-controller . In this scenario, Skipper uses the Kubernetes API's Ingress extensions as a source for routing. For a complete deployment example, see more details in: https://github.com/zalando-incubator/kubernetes-on-aws/ . - Innkeeper: the Innkeeper service implements a storage for large sets of Skipper routes, with an HTTP+JSON API, OAuth2 authentication and role management. See the 'innkeeper' package and https://github.com/zalando/innkeeper. - etcd: Skipper can load routes and receive updates from etcd clusters (https://github.com/coreos/etcd). See the 'etcd' package. - static file: package eskipfile implements a simple data client, which can load route definitions from a static file in eskip format. Currently, it loads the routes on startup. It doesn't support runtime updates. Skipper can use additional data sources, provided by extensions. Sources must implement the DataClient interface in the routing package. Skipper provides circuit breakers, configured either globally, based on backend hosts or based on individual routes. It supports two types of circuit breaker behavior: open on N consecutive failures, or open on N failures out of M requests. For details, see: https://godoc.org/github.com/zalando/skipper/circuit. Skipper can be started with the default executable command 'skipper', or as a library built into an application. The easiest way to start Skipper as a library is to execute the 'Run' function of the current, root package. Each option accepted by the 'Run' function is wired in the default executable as well, as a command line flag. E.g. EtcdUrls becomes -etcd-urls as a comma separated list. For command line help, enter: An additional utility, eskip, can be used to verify, print, update and delete routes from/to files or etcd (Innkeeper on the roadmap). See the cmd/eskip command package, and/or enter in the command line: Skipper doesn't use dynamically loaded plugins, however, it can be used as a library, and it can be extended with custom predicates, filters and/or custom data sources. To create a custom predicate, one needs to implement the PredicateSpec interface in the routing package. Instances of the PredicateSpec are used internally by the routing package to create the actual Predicate objects as referenced in eskip routes, with concrete arguments. Example, randompredicate.go: In the above example, a custom predicate is created, that can be referenced in eskip definitions with the name 'Random': To create a custom filter we need to implement the Spec interface of the filters package. 'Spec' is the specification of a filter, and it is used to create concrete filter instances, while the raw route definitions are processed. Example, hellofilter.go: The above example creates a filter specification, and in the routes where they are included, the filter instances will set the 'X-Hello' header for each and every response. The name of the filter is 'hello', and in a route definition it is referenced as: The easiest way to create a custom Skipper variant is to implement the required filters (as in the example above) by importing the Skipper package, and starting it with the 'Run' command. Example, hello.go: A file containing the routes, routes.eskip: Start the custom router: The 'Run' function in the root Skipper package starts its own listener but it doesn't provide the best composability. The proxy package, however, provides a standard http.Handler, so it is possible to use it in a more complex solution as a building block for routing. Skipper provides detailed logging of failures, and access logs in Apache log format. Skipper also collects detailed performance metrics, and exposes them on a separate listener endpoint for pulling snapshots. For details, see the 'logging' and 'metrics' packages documentation. The router's performance depends on the environment and on the used filters. Under ideal circumstances, and without filters, the biggest time factor is the route lookup. Skipper is able to scale to thousands of routes with logarithmic performance degradation. However, this comes at the cost of increased memory consumption, due to storing the whole lookup tree in a single structure. Benchmarks for the tree lookup can be run by: In case more aggressive scale is needed, it is possible to setup Skipper in a cascade model, with multiple Skipper instances for specific route segments.
Package pipes provides the API client, operations, and parameter types for Amazon EventBridge Pipes. Amazon EventBridge Pipes connects event sources to targets. Pipes reduces the need for specialized knowledge and integration code when developing event driven architectures. This helps ensures consistency across your company’s applications. With Pipes, the target can be any available EventBridge target. To set up a pipe, you select the event source, add optional event filtering, define optional enrichment, and select the target for the event data.
Package gofpdf implements a PDF document generator with high level support for text, drawing and images. - UTF-8 support - Choice of measurement unit, page format and margins - Page header and footer management - Automatic page breaks, line breaks, and text justification - Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images - Colors, gradients and alpha channel transparency - Outline bookmarks - Internal and external links - TrueType, Type1 and encoding support - Page compression - Lines, Bézier curves, arcs, and ellipses - Rotation, scaling, skewing, translation, and mirroring - Clipping - Document protection - Layers - Templates - Barcodes - Charting facility - Import PDFs as templates gofpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. gofpdf supports UTF-8 TrueType fonts and “right-to-left” languages. Note that Chinese, Japanese, and Korean characters may not be included in many general purpose fonts. For these languages, a specialized font (for example, NotoSansSC for simplified Chinese) can be used. Also, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. This repository will not be maintained, at least for some unknown duration. But it is hoped that gofpdf has a bright future in the open source world. Due to Go’s promise of compatibility, gofpdf should continue to function without modification for a longer time than would be the case with many other languages. Forks should be based on the last viable commit. Tools such as active-forks can be used to select a fork that looks promising for your needs. If a particular fork looks like it has taken the lead in attracting followers, this README will be updated to point people in that direction. The efforts of all contributors to this project have been deeply appreciated. Best wishes to all of you. If you currently use the $GOPATH scheme, install the package with the following command. To test the installation, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running go test ./... is the production of a number of example PDFs. These can be found in the gofpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you’ll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the gofpdf/pdf/reference directory and if the third argument to ComparePDFFiles() in internal/example/example.go is true. (By default it is false.) The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). You should use AddUTF8Font() or AddUTF8FontFromBytes() to add a TrueType UTF-8 encoded font. Use RTL() and LTR() methods switch between “right-to-left” and “left-to-right” mode. In order to use a different non-UTF-8 TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run “go build”. This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include Google Fonts and DejaVu Fonts. The draw2d package is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the contrib directory. Here are guidelines for making submissions. Your change should - be compatible with the MIT License - be properly documented - be formatted with go fmt - include an example in fpdf_test.go if appropriate - conform to the standards of golint and go vet, that is, golint . and go vet . should not generate any warnings - not diminish test coverage Pull requests are the preferred means of accepting your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package’s code and documentation are closely derived from the FPDF library created by Olivier Plathey, and a number of font and image resources are copied directly from it. Bruno Michel has provided valuable assistance with the code. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image’s extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Dan Meyers added support for embedded JavaScript. David Fish added a generic alias-replacement function to enable, among other things, table of contents functionality. Andy Bakun identified and corrected a problem in which the internal catalogs were not sorted stably. Paul Montag added encoding and decoding functionality for templates, including images that are embedded in templates; this allows templates to be stored independently of gofpdf. Paul also added support for page boxes used in printing PDF documents. Wojciech Matusiak added supported for word spacing. Artem Korotkiy added support of UTF-8 fonts. Dave Barnes added support for imported objects and templates. Brigham Thompson added support for rounded rectangles. Joe Westcott added underline functionality and optimized image storage. Benoit KUGLER contributed support for rectangles with corners of unequal radius, modification times, and for file attachments and annotations. - Remove all legacy code page font support; use UTF-8 exclusively - Improve test coverage as reported by the coverage tool. Example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.Summary() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
Package addrmgr implements concurrency safe Decred address manager. In order maintain the peer-to-peer Decred network, there needs to be a source of addresses to connect to as nodes come and go. The Decred protocol provides the getaddr and addr messages to allow peers to communicate known addresses with each other. However, there needs to a mechanism to store those results and select peers from them. It is also important to note that remote peers can't be trusted to send valid peers nor attempt to provide you with only peers they control with malicious intent. With that in mind, this package provides a concurrency safe address manager for caching and selecting peers in a non-deterministic manner. The general idea is the caller adds addresses to the address manager and notifies it when addresses are connected, known good, and attempted. The caller also requests addresses as it needs them. The address manager internally segregates the addresses into groups and non-deterministically selects groups in a cryptographically random manner. This reduce the chances multiple addresses from the same nets are selected which generally helps provide greater peer diversity, and perhaps more importantly, drastically reduces the chances an attacker is able to coerce your peer into only connecting to nodes they control. The address manager also understands routability and Tor addresses and tries hard to only return routable addresses. In addition, it uses the information provided by the caller about connected, known good, and attempted addresses to periodically purge peers which no longer appear to be good peers as well as bias the selection toward known good peers. The general idea is to make a best effort at only providing usable addresses.
Package hazelcast provides the Hazelcast Go client. Hazelcast is an open-source distributed in-memory data store and computation platform. It provides a wide variety of distributed data structures and concurrency primitives. Hazelcast Go client is a way to communicate to Hazelcast IMDG clusters and access the cluster data. If you are using Hazelcast and Go Client on the same computer, generally the default configuration should be fine. This is great for trying out the client. However, if you run the client on a different computer than any of the cluster members, you may need to do some simple configurations such as specifying the member addresses. The Hazelcast members and clients have their own configuration options. You may need to reflect some of the member side configurations on the client side to properly connect to the cluster. In order to configure the client, you only need to create a new `hazelcast.Config{}`, which you can pass to `hazelcast.StartNewClientWithConnfig` function: Calling hazelcast.StartNewClientWithConfig with the default configuration is equivalent to hazelcast.StartNewClient. The default configuration assumes Hazelcast is running at localhost:5701 with the cluster name set to dev. If you run Hazelcast members in a different server than the client, you need to make certain changes to client settings. Assuming Hazelcast members are running at hz1.server.com:5701, hz2.server.com:5701 and hz3.server.com:5701 with cluster name production, you would use the configuration below. Note that addresses must include port numbers: You can also load configuration from JSON: If you are changing several options in a configuration section, you may have to repeatedly specify the configuration section: You can simplify the code above by getting a reference to config.Cluster and update it: Note that you should get a reference to the configuration section you are updating, otherwise you would update a copy of it, which doesn't modify the configuration. There are a few options that require a duration, such as config.Cluster.HeartbeatInterval, config.Cluster.Network.ConnectionTimeout and others. You must use types.Duration instead of time.Duration with those options, since types.Duration values support human readable durations when deserialized from text: That corresponds to the following JSON configuration. Refer to https://golang.org/pkg/time/#ParseDuration for the available duration strings: Here are all configuration items with their default values: Checkout the nearcache package for the documentation about the Near Cache. You can listen to creation and destroy events for distributed objects by attaching a listener to the client. A distributed object is created when first referenced unless it already exists. Here is an example: If you don't want to receive any distributed object events, use client.RemoveDistributedObjectListener: Running SQL queries require Hazelcast 5.0 and up. Check out the Hazelcast SQL documentation here: https://docs.hazelcast.com/hazelcast/latest/sql/sql-overview The SQL support should be enabled in Hazelcast server configuration: The client supports two kinds of queries: The ones returning rows (select statements and a few others) and the rest (insert, update, etc.). The former kinds of queries are executed with QuerySQL method and the latter ones are executed with ExecSQL method. Use the question mark (?) for placeholders. To connect to a data source and query it as if it is a table, a mapping should be created. Currently, mappings for Map, Kafka and file data sources are supported. You can read the details about mappings here: https://docs.hazelcast.com/hazelcast/latest/sql/sql-overview#mappings The following data types are supported when inserting/updating. The names in parantheses correspond to SQL types: Using Date/Time In order to force using a specific date/time type, create a time.Time value and cast it to the target type: Hazelcast Management Center can monitor your clients if client-side statistics are enabled. You can enable statistics by setting config.Stats.Enabled to true. Optionally, the period of statistics collection can be set using config.Stats.Period setting. The labels set in configuration appear in the Management Center console:
This example shows how to instrument sql queries in order to display the time that they consume package main import ( ) // Hooks satisfies the sqlhook.Hooks interface type Hooks struct {} // Before hook will print the query with it's args and return the context with the timestamp // After hook will get the timestamp registered on the Before hook and print the elapsed time /* Output should look like: > CREATE TABLE t (id INTEGER, text VARCHAR(16)) []. took: 121.238µs > INSERT into t (text) VALUES(?), (?) ["foo" "bar"]. took: 36.364µs > SELECT id, text FROM t []. took: 4.653µs */
Package paypal provides a wrapper to PayPal API (https://developer.paypal.com/webapps/developer/docs/api/). The first thing you do is to create a Client (you can select API base URL using paypal contants). Then you can get an access token from PayPal: After you have an access token you can call built-in functions to get data from PayPal. paypal will assign all responses to go structures.
Package weightedrand contains a performant data structure and algorithm used to randomly select an element from some kind of list, where the chances of each element to be selected not being equal, but defined by relative "weights" (or probabilities). This is called weighted random selection. Compare this package with (github.com/jmcvetta/randutil).WeightedChoice, which is optimized for the single operation case. In contrast, this package creates a presorted cache optimized for binary search, allowing for repeated selections from the same set to be significantly faster, especially for large data sets. In this example, we create a Chooser to pick from amongst various emoji fruit runes. We assign a numeric weight to each choice. These weights are relative, not on any absolute scoring system. In this trivial case, we will assign a weight of 0 to all but one fruit, so that the output will be predictable.
Package chunker implements Content Defined Chunking (CDC) based on a rolling Rabin Checksum. The function RandomPolynomial() returns a new random polynomial of degree 53 for use with the chunker. The degree 53 is chosen because it is the largest prime below 64-8 = 56, so that the top 8 bits of an uint64 can be used for optimising calculations in the chunker. A random polynomial is chosen selecting 64 random bits, masking away bits 64..54 and setting bit 53 to one (otherwise the polynomial is not of the desired degree) and bit 0 to one (otherwise the polynomial is trivially reducible), so that 51 bits are chosen at random. This process is repeated until Irreducible() returns true, then this polynomials is returned. If this doesn't happen after 1 million tries, the function returns an error. The probability for selecting an irreducible polynomial at random is about 7.5% ( (2^53-2)/53 / 2^51), so the probability that no irreducible polynomial has been found after 100 tries is lower than 0.04%. During development the results have been verified using the computational discrete algebra system GAP, which can be obtained from the website at http://www.gap-system.org/. For filtering a given list of polynomials in hexadecimal coefficient notation, the following script can be used: All irreducible polynomials from the list are written to the output. An introduction to Rabin Fingerprints/Checksums can be found in the following articles: Michael O. Rabin (1981): "Fingerprinting by Random Polynomials" http://www.xmailserver.org/rabin.pdf Ross N. Williams (1993): "A Painless Guide to CRC Error Detection Algorithms" http://www.zlib.net/crc_v3.txt Andrei Z. Broder (1993): "Some Applications of Rabin's Fingerprinting Method" http://www.xmailserver.org/rabin_apps.pdf Shuhong Gao and Daniel Panario (1997): "Tests and Constructions of Irreducible Polynomials over Finite Fields" http://www.math.clemson.edu/~sgao/papers/GP97a.pdf Andrew Kadatch, Bob Jenkins (2007): "Everything we know about CRC but afraid to forget" http://crcutil.googlecode.com/files/crc-doc.1.0.pdf
Package redisc implements a redis cluster client on top of the redigo client package. It supports all commands that can be executed on a redis cluster, including pub-sub, scripts and read-only connections to read data from replicas. See http://redis.io/topics/cluster-spec for details. The package defines two main types: Cluster and Conn. Both are described in more details below, but the Cluster manages the mapping of keys (or more exactly, hash slots computed from keys) to a group of nodes that form a redis cluster, and a Conn manages a connection to this cluster. The package is designed such that for simple uses, or when keys have been carefully named to play well with a redis cluster, a Cluster value can be used as a drop-in replacement for a redis.Pool from the redigo package. Similarly, the Conn type implements redigo's redis.Conn interface (and the augmented redis.ConnWithTimeout one too), so the API to execute commands is the same - in fact the redisc package uses the redigo package as its only third-party dependency. When more control is needed, the package offers some extra behaviour specific to working with a redis cluster: Slot and SplitBySlot functions to compute the slot for a given key and to split a list of keys into groups of keys from the same slot, so that each group can safely be handled using the same connection. *Conn.Bind (or the BindConn package-level helper function) to explicitly specify the keys that will be used with the connection so that the right node is selected, instead of relying on the automatic detection based on the first parameter of the command. *Conn.ReadOnly (or the ReadOnlyConn package-level helper function) to mark a connection as read-only, allowing commands to be served by a replica instead of the master. RetryConn to wrap a connection into one that automatically follows redirections when the cluster moves slots around. Helper functions to deal with cluster-specific errors. The Cluster type manages a redis cluster and offers an interface compatible with redigo's redis.Pool: Along with some additional methods specific to a cluster: If the CreatePool function field is set, then a redis.Pool is created to manage connections to each of the cluster's nodes. A call to Get returns a connection from that pool. The Dial method, on the other hand, guarantees that the returned connection will not be managed by a pool, even if CreatePool is set. It calls redigo's redis.Dial function to create the unpooled connection, passing along any DialOptions set on the cluster. If the cluster's CreatePool field is nil, Get behaves the same as Dial. The Refresh method refreshes the cluster's internal mapping of hash slots to nodes. It should typically be called only once, after the cluster is created and before it is used, so that the first connections already benefit from smart routing. It is automatically kept up-to-date based on the redis MOVED responses afterwards. The EachNode method visits each node in the cluster and calls the provided function with a connection to that node, which may be useful to run diagnostics commands on each node or to collect keys across the whole cluster. The Stats method returns the pool statistics for each node, with the node's address as key of the map. A cluster must be closed once it is no longer used to release its resources. The connection returned from Get or Dial is a redigo redis.Conn interface (that also implements redis.ConnWithTimeout), with a concrete type of *Conn. In addition to the interface's required methods, *Conn adds the following methods: The returned connection is not yet connected to any node; it is "bound" to a specific node only when a call to Do, Send, Receive or Bind is made. For Do, Send and Receive, the node selection is implicit, it uses the first parameter of the command, and computes the hash slot assuming that first parameter is a key. It then binds the connection to the node corresponding to that slot. If there are no parameters for the command, or if there is no command (e.g. in a call to Receive), a random node is selected. Bind is explicit, it gives control to the caller over which node to select by specifying a list of keys that the caller wishes to handle with the connection. All keys must belong to the same slot, and the connection must not already be bound to a node, otherwise an error is returned. On success, the connection is bound to the node holding the slot of the specified key(s). Because the connection is returned as a redis.Conn interface, a type assertion must be used to access the underlying *Conn and to be able to call Bind: The BindConn package-level function is provided as a helper for this common use-case. The ReadOnly method marks the connection as read-only, meaning that it will attempt to connect to a replica instead of the master node for its slot. Once bound to a node, the READONLY redis command is sent automatically, so it doesn't have to be sent explicitly before use. ReadOnly must be called before the connection is bound to a node, otherwise an error is returned. For the same reason as for Bind, a type assertion must be used to call ReadOnly on a *Conn, so a package-level helper function is also provided, ReadOnlyConn. There is no ReadWrite method, because it can be sent as a normal redis command and will essentially end that connection (all commands will now return MOVED errors). If the connection was wrapped in a RetryConn call, then it will automatically follow the redirection to the master node (see the Redirections section). The connection must be closed after use, to release the underlying resources. The redis cluster may return MOVED and ASK errors when the node that received the command doesn't currently hold the slot corresponding to the key. The package cannot reliably handle those redirections automatically because the redirection error may be returned for a pipeline of commands, some of which may have succeeded. However, a connection can be wrapped by a call to RetryConn, which returns a redis.Conn interface where only calls to Do, Close and Err can succeed. That means pipelining is not supported, and only a single command can be executed at a time, but it will automatically handle MOVED and ASK replies, as well as TRYAGAIN errors. Note that even if RetryConn is not used, the cluster always updates its mapping of slots to nodes automatically by keeping track of MOVED replies. The concurrency model is similar to that of the redigo package: Cluster methods are safe to call concurrently (like redis.Pool). Connections do not support concurrent calls to write methods (Send, Flush) or concurrent calls to the read method (Receive). Connections do allow a concurrent reader and writer. Because the Do method combines the functionality of Send, Flush and Receive, it cannot be called concurrently with other methods. The Bind and ReadOnly methods are safe to call concurrently, but there is not much point in doing so for as both will fail if the connection is already bound. Create and use a cluster.
Package blockchain implements Decred block handling and chain selection rules. The Decred block handling and chain selection rules are an integral, and quite likely the most important, part of decred. At its core, Decred is a distributed consensus of which blocks are valid and which ones will comprise the main block chain (public ledger) that ultimately determines accepted transactions, so it is extremely important that fully validating nodes agree on all rules. At a high level, this package provides support for inserting new blocks into the block chain according to the aforementioned rules. It includes functionality such as rejecting duplicate blocks, ensuring blocks and transactions follow all rules, orphan handling, and best chain selection along with reorganization. Since this package does not deal with other Decred specifics such as network communication or wallets, it provides a notification system which gives the caller a high level of flexibility in how they want to react to certain events such as orphan blocks which need their parents requested and newly connected main chain blocks which might result in wallet updates. Before a block is allowed into the block chain, it must go through an intensive series of validation rules. The following list serves as a general outline of those rules to provide some intuition into what is going on under the hood, but is by no means exhaustive: Errors returned by this package are either the raw errors provided by underlying calls or of type blockchain.RuleError. This allows the caller to differentiate between unexpected errors, such as database errors, versus errors due to rule violations through type assertions. In addition, callers can programmatically determine the specific rule violation by examining the ErrorCode field of the type asserted blockchain.RuleError.
Package blockchain implements Decred block handling and chain selection rules. The Decred block handling and chain selection rules are an integral, and quite likely the most important, part of Decred. At its core, Decred is a distributed consensus of which blocks are valid and which ones will comprise the main block chain (public ledger) that ultimately determines accepted transactions, so it is extremely important that fully validating nodes agree on all rules. At a high level, this package provides support for inserting new blocks into the block chain according to the aforementioned rules. It includes functionality such as rejecting duplicate blocks, ensuring blocks and transactions follow all rules, and best chain selection along with reorganization. Since this package does not deal with other Decred specifics such as network communication or wallets, it provides a notification system which gives the caller a high level of flexibility in how they want to react to certain events such as newly connected main chain blocks which might result in wallet updates. Before a block is allowed into the block chain, it must go through an intensive series of validation rules. The following list serves as a general outline of those rules to provide some intuition into what is going on under the hood, but is by no means exhaustive: This package supports headers-first semantics such that block data can be processed out of order so long as the associated header is already known. The headers themselves, however, must be processed in the correct order since headers that do not properly connect are rejected. In other words, orphan headers are not allowed. The processing code always maintains the best chain as the branch tip that has the most cumulative proof of work, so it is important to keep that in mind when considering errors returned from processing blocks. Notably, due to the ability to process blocks out of order, and the fact blocks can only be fully validated once all of their ancestors have the block data available, it is to be expected that no error is returned immediately for blocks that are valid enough to make it to the point they require the remaining ancestor block data to be fully validated even though they might ultimately end up failing validation. Similarly, because the data for a block becoming available makes any of its direct descendants that already have their data available eligible for validation, an error being returned does not necessarily mean the block being processed is the one that failed validation. Errors returned by this package have full support for the standard library errors.Is and errors.As methods and are either the raw errors provided by underlying calls or of type blockchain.RuleError, possibly wrapped in a blockchain.MultiError. This allows the caller to differentiate between unexpected errors, such as database errors, versus errors due to rule violations through errors.As. In addition, callers can programmatically determine the specific rule violation by making use of errors.Is with any of the wrapped error kinds.
Package paypal provides a wrapper to PayPal API (https://developer.paypal.com/webapps/developer/docs/api/). The first thing you do is to create a Client (you can select API base URL using paypal contants). Then you can get an access token from PayPal: After you have an access token you can call built-in functions to get data from PayPal. paypal will assign all responses to go structures.
Ivy is an interpreter for an APL-like language. It is a plaything and a work in progress. Unlike APL, the input is ASCII and the results are exact (but see the next paragraph). It uses exact rational arithmetic so it can handle arbitrary precision. Values to be input may be integers (3, -1), rationals (1/3, -45/67) or floating point values (1e3, -1.5 (representing 1000 and -3/2)). Some functions such as sqrt are irrational. When ivy evaluates an irrational function, the result is stored in a high-precision floating-point number (default 256 bits of mantissa). Thus when using irrational functions, the values have high precision but are not exact. Unlike in most other languages, operators always have the same precedence and expressions are evaluated in right-associative order. That is, unary operators apply to everything to the right, and binary operators apply to the operand immediately to the left and to everything to the right. Thus, 3*4+5 is 27 (it groups as 3*(4+5)) and iota 3+2 is 1 2 3 4 5 while 3+iota 2 is 4 5. A vector is a single operand, so 1 2 3 + 3 + 3 4 5 is (1 2 3) + 3 + (3 4 5), or 7 9 11. As a special but important case, note that 1/3, with no intervening spaces, is a single rational number, not the expression 1 divided by 3. This can affect precedence: 3/6*4 is 2 while 3 / 6*4 is 1/8 since the spacing turns the / into a division operator. Use parentheses or spaces to disambiguate: 3/(6*4) or 3 /6*4. Ivy has complex numbers, which are constructed using the unary or binary j operator. As with rationals, the token 1j2 (the representation of 1+2i) is a single token. The individual parts can be rational, so 1/2j-3/2 is the complex number 0.5-1.5i and scans as a single value. Indexing uses [] notation: x[1], x[1; 2], and so on. Indexing by a vector selects multiple elements: x[1 2] creates a new item from x[1] and x[2]. An empty index slot is a shorthand for all the elements along that dimension, so x[] is equivalent to x, and x[;3] gives the third column of two-dimensional array x. Only a subset of APL's functionality is implemented, but all numerical operations are supported. Semicolons separate multiple statements on a line. Variables are alphanumeric and are assigned with the = operator. Assignment is an expression. After each successful expression evaluation, the result is stored in the variable called _ (underscore) so it can be used in the next expression. The APL operators, adapted from https://en.wikipedia.org/wiki/APL_syntax_and_symbols, and their correspondence are listed here. The correspondence is incomplete and inexact. Unary operators Binary operators Operators and axis indicator Type-converting operations The constants e (base of natural logarithms) and pi (π) are pre-defined to high precision, about 3000 decimal digits truncated according to the floating point precision setting. Strings are vectors of "chars", which are Unicode code points (not bytes). Syntactically, string literals are very similar to those in Go, with back-quoted raw strings and double-quoted interpreted strings. Unlike Go, single-quoted strings are equivalent to double-quoted, a nod to APL syntax. A string with a single char is just a singleton char value; all others are vectors. Thus “, "", and ” are empty vectors, `a`, "a", and 'a' are equivalent representations of a single char, and `ab`, `a` `b`, "ab", "a" "b", 'ab', and 'a' 'b' are equivalent representations of a two-char vector. Unlike in Go, a string in ivy comprises code points, not bytes; as such it can contain only valid Unicode values. Thus in ivy "\x80" is illegal, although it is a legal one-byte string in Go. Strings can be printed. If a vector contains only chars, it is printed without spaces between them. Chars have restricted operations. Printing, comparison, indexing and so on are legal but arithmetic is not, and chars cannot be converted automatically into other singleton values (ints, floats, and so on). The unary operators char and code enable transcoding between integer and char values. Users can define unary and binary operators, which then behave just like built-in operators. Both a unary and a binary operator may be defined for the same name. The syntax of a definition is the 'op' keyword, the operator and formal arguments, an equals sign, and then the body. The names of the operator and its arguments must be identifiers. For unary operators, write "op name arg"; for binary write "op leftarg name rightarg". The final expression in the body is the return value. Operators may have recursive definitions; see the paragraph about conditional execution for an example. The body may be a single line (possibly containing semicolons) on the same line as the 'op', or it can be multiple lines. For a multiline entry, there is a newline after the '=' and the definition ends at the first blank line (ignoring spaces). Conditional execution is done with the ":" binary conditional return operator, which is valid only within the code for a user-defined operator. The left operand must be a scalar. If it is non-zero, the right operand is returned as the value of the function. Otherwise, execution continues normally. The ":" operator has a lower precedence than any other operator; in effect it breaks the line into two separate expressions. Example: average of a vector (unary): Example: n largest entries in a vector (binary): Example: multiline operator definition (binary): Example: primes less than N (unary): Example: greatest common divisor (binary): On mobile platforms only, due to I/O restrictions, user-defined operators must be presented on a single line. Use semicolons to separate expressions: To declare an operator but not define it, omit the equals sign and what follows. Within a user-defined operator body, identifiers are local to the invocation if they are assigned before being read, and global if read before being written. To write to a global without reading it first, insert an unused read. To remove the definition of a unary or binary user-defined operator, Ivy accepts a number of special commands, introduced by a right paren at the beginning of the line. Most report the current value if a new value is not specified. For these commands, numbers are always read and printed base 10 and must be non-negative on input.
Package paypal provides a wrapper to PayPal API (https://developer.paypal.com/webapps/developer/docs/api/). The first thing you do is to create a Client (you can select API base URL using paypal contants). Then you can get an access token from PayPal: After you have an access token you can call built-in functions to get data from PayPal. paypal will assign all responses to go structures.
Package vfsgen takes an http.FileSystem (likely at `go generate` time) and generates Go code that statically implements the provided http.FileSystem. Features: - Efficient generated code without unneccessary overhead. - Uses gzip compression internally (selectively, only for files that compress well). - Enables direct access to internal gzip compressed bytes via an optional interface. - Outputs `gofmt`ed Go code. This code will generate an assets_vfsdata.go file with `var assets http.FileSystem = ...` that statically implements the contents of "assets" directory. vfsgen is great to use with go generate directives. This code can go in an assets_gen.go file, which can then be invoked via "//go:generate go run assets_gen.go". The input virtual filesystem can read directly from disk, or it can be more involved.
Package gofpdf implements a PDF document generator with high level support for text, drawing and images. - UTF-8 support - Choice of measurement unit, page format and margins - Page header and footer management - Automatic page breaks, line breaks, and text justification - Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images - Colors, gradients and alpha channel transparency - Outline bookmarks - Internal and external links - TrueType, Type1 and encoding support - Page compression - Lines, Bézier curves, arcs, and ellipses - Rotation, scaling, skewing, translation, and mirroring - Clipping - Document protection - Layers - Templates - Barcodes - Charting facility - Import PDFs as templates gofpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. gofpdf supports UTF-8 TrueType fonts and “right-to-left” languages. Note that Chinese, Japanese, and Korean characters may not be included in many general purpose fonts. For these languages, a specialized font (for example, NotoSansSC for simplified Chinese) can be used. Also, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. This repository will not be maintained, at least for some unknown duration. But it is hoped that gofpdf has a bright future in the open source world. Due to Go’s promise of compatibility, gofpdf should continue to function without modification for a longer time than would be the case with many other languages. Forks should be based on the last viable commit. Tools such as active-forks can be used to select a fork that looks promising for your needs. If a particular fork looks like it has taken the lead in attracting followers, this README will be updated to point people in that direction. The efforts of all contributors to this project have been deeply appreciated. Best wishes to all of you. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running go test ./... is the production of a number of example PDFs. These can be found in the gofpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you’ll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the gofpdf/pdf/reference directory and if the third argument to ComparePDFFiles() in internal/example/example.go is true. (By default it is false.) The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). You should use AddUTF8Font() or AddUTF8FontFromBytes() to add a TrueType UTF-8 encoded font. Use RTL() and LTR() methods switch between “right-to-left” and “left-to-right” mode. In order to use a different non-UTF-8 TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run “go build”. This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include Google Fonts and DejaVu Fonts. The draw2d package is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the contrib directory. Here are guidelines for making submissions. Your change should - be compatible with the MIT License - be properly documented - be formatted with go fmt - include an example in fpdf_test.go if appropriate - conform to the standards of golint and go vet, that is, golint . and go vet . should not generate any warnings - not diminish test coverage Pull requests are the preferred means of accepting your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package’s code and documentation are closely derived from the FPDF library created by Olivier Plathey, and a number of font and image resources are copied directly from it. Bruno Michel has provided valuable assistance with the code. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image’s extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Dan Meyers added support for embedded JavaScript. David Fish added a generic alias-replacement function to enable, among other things, table of contents functionality. Andy Bakun identified and corrected a problem in which the internal catalogs were not sorted stably. Paul Montag added encoding and decoding functionality for templates, including images that are embedded in templates; this allows templates to be stored independently of gofpdf. Paul also added support for page boxes used in printing PDF documents. Wojciech Matusiak added supported for word spacing. Artem Korotkiy added support of UTF-8 fonts. Dave Barnes added support for imported objects and templates. Brigham Thompson added support for rounded rectangles. Joe Westcott added underline functionality and optimized image storage. Benoit KUGLER contributed support for rectangles with corners of unequal radius, modification times, and for file attachments and annotations. - Remove all legacy code page font support; use UTF-8 exclusively - Improve test coverage as reported by the coverage tool. Example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.Summary() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
Package yptr is a JSONPointer implementation that can walk though a yaml.Node tree. yaml.Nodes preserve comments and locations in the source and can be useful to implement editing in-place functionality that uses JSONPointer to locate the fields to be edited. It also implements a simple extension to the JSONPointers standard that handles pointers into k8s manifests which usually contain arrays whose elements are objects with a field that uniquely specifies the array entry (e.g. "name"). For example, given a JSON/YAML input document: If "k" is a field that contains a key that uniquiely identifies an element in a given array, we can select the node with the scalar 42 by first selecting the array element for which "k" has the value of "x", and then by walking to the field "v": The "~" token accepts an argument which is interpreted as JSON value to be used as "query-by-example" filter against elements of an array. The array element is selected if the query-by-example object is a (recursive) subset of the element. The ~{...} extension can potentially locate multiple matches. For example, "~{}" effectively acts as a wildcard. This library offers an API to retrieve multiple matches ("FindAll") or to fetch only one match and error if multiple matches are found ("Find"). JSONPointer is designed to locate exactly one node in the tree. This can be achieved only if the effective schema of the JSON/YAML document mandates that there is an identifying key in each array element you want to point to. Using the "Find" function effectively performs a dynamic check of that invariant.
Package weightedrand contains a performant data structure and algorithm used to randomly select an element from some kind of list, where the chances of each element to be selected not being equal, but defined by relative "weights" (or probabilities). This is called weighted random selection. This package creates a presorted cache optimized for binary search, allowing for repeated selections from the same set to be significantly faster, especially for large data sets. In this example, we create a Chooser to pick from amongst various emoji fruit runes. We assign a numeric weight to each choice. These weights are relative, not on any absolute scoring system. In this trivial case, we will assign a weight of 0 to all but one fruit, so that the output will be predictable.
Package ajson implements decoding of JSON as defined in RFC 7159 without predefined mapping to a struct of golang, with support of JSONPath. All JSON structs reflects to a custom struct of Node, witch can be presented by it type and value. Method Unmarshal will scan all the byte slice to create a root node of JSON structure, with all it behaviors. Each Node has it's own type and calculated value, which will be calculated on demand. Calculated value saves in atomic.Value, so it's thread safe. Method JSONPath will returns slice of founded elements in current JSON data, by it's JSONPath. JSONPath selection described at http://goessner.net/articles/JsonPath/ JSONPath expressions always refer to a JSON structure in the same way as XPath expression are used in combination with an XML document. Since a JSON structure is usually anonymous and doesn't necessarily have a "root member object" JSONPath assumes the abstract name $ assigned to the outer level object. JSONPath expressions can use the dot–notation or the bracket–notation for input pathes. Internal or output pathes will always be converted to the more general bracket–notation. JSONPath allows the wildcard symbol * for member names and array indices. It borrows the descendant operator '..' from E4X and the array slice syntax proposal [start:end:step] from ECMASCRIPT 4. Expressions of the underlying scripting language (<expr>) can be used as an alternative to explicit names or indices as in using the symbol '@' for the current object. Filter expressions are supported via the syntax ?(<boolean expr>) as in Here is a complete overview and a side by side comparison of the JSONPath syntax elements with its XPath counterparts. Package has several predefined constants. You are free to add new one with AddConstant Package has several predefined operators. You are free to add new one with AddOperator Operator precedence: https://golang.org/ref/spec#Operator_precedence Arithmetic operators: https://golang.org/ref/spec#Arithmetic_operators Package has several predefined functions. You are free to add new one with AddFunction
Package ora implements an Oracle database driver. ### Golang Oracle Database Driver ### #### TL;DR; just use it #### Call stored procedure with OUT parameters: An Oracle database may be accessed through the database/sql(http://golang.org/pkg/database/sql) package or through the ora package directly. database/sql offers connection pooling, thread safety, a consistent API to multiple database technologies and a common set of Go types. The ora package offers additional features including pointers, slices, nullable types, numerics of various sizes, Oracle-specific types, Go return type configuration, and Oracle abstractions such as environment, server and session. The ora package is written with the Oracle Call Interface (OCI) C-language libraries provided by Oracle. The OCI libraries are a standard for client application communication and driver communication with Oracle databases. The ora package has been verified to work with: * Oracle Standard 11g (11.2.0.4.0), Linux x86_64 (RHEL6) * Oracle Enterprise 12c (12.1.0.1.0), Windows 8.1 and AMD64. --- * [Installation](https://github.com/rana/ora#installation) * [Data Types](https://github.com/rana/ora#data-types) * [SQL Placeholder Syntax](https://github.com/rana/ora#sql-placeholder-syntax) * [Working With The Sql Package](https://github.com/rana/ora#working-with-the-sql-package) * [Working With The Oracle Package Directly](https://github.com/rana/ora#working-with-the-oracle-package-directly) * [Logging](https://github.com/rana/ora#logging) * [Test Database Setup](https://github.com/rana/ora#test-database-setup) * [Limitations](https://github.com/rana/ora#limitations) * [License](https://github.com/rana/ora#license) * [API Reference](http://godoc.org/github.com/rana/ora#pkg-index) * [Examples](./examples) --- Minimum requirements are Go 1.3 with CGO enabled, a GCC C compiler, and Oracle 11g (11.2.0.4.0) or Oracle Instant Client (11.2.0.4.0). Install Oracle or Oracle Instant Client. Copy the [oci8.pc](contrib/oci8.pc) from the `contrib` folder (or the one for your system, maybe tailored to your specific locations) to a folder in `$PKG_CONFIG_PATH` or a system folder, such as The ora package has no external Go dependencies and is available on GitHub and gopkg.in: *WARNING*: If you have Oracle Instant Client 11.2, you'll need to add "=lnnz11" to the list of linked libs! Otherwise, you may encounter "undefined reference to `nzosSCSP_SetCertSelectionParams' " errors. Oracle Instant Client 12.1 does not need this. The ora package supports all built-in Oracle data types. The supported Oracle built-in data types are NUMBER, BINARY_DOUBLE, BINARY_FLOAT, FLOAT, DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE, TIMESTAMP WITH LOCAL TIME ZONE, INTERVAL YEAR TO MONTH, INTERVAL DAY TO SECOND, CHAR, NCHAR, VARCHAR, VARCHAR2, NVARCHAR2, LONG, CLOB, NCLOB, BLOB, LONG RAW, RAW, ROWID and BFILE. SYS_REFCURSOR is also supported. Oracle does not provide a built-in boolean type. Oracle provides a single-byte character type. A common practice is to define two single-byte characters which represent true and false. The ora package adopts this approach. The oracle package associates a Go bool value to a Go rune and sends and receives the rune to a CHAR(1 BYTE) column or CHAR(1 CHAR) column. The default false rune is zero '0'. The default true rune is one '1'. The bool rune association may be configured or disabled when directly using the ora package but not with the database/sql package. Within a SQL string a placeholder may be specified to indicate where a Go variable is placed. The SQL placeholder is an Oracle identifier, from 1 to 30 characters, prefixed with a colon (:). For example: Placeholders within a SQL statement are bound by position. The actual name is not used by the ora package driver e.g., placeholder names :c1, :1, or :xyz are treated equally. The `database/sql` package provides a LastInsertId method to return the last inserted row's id. Oracle does not provide such functionality, but if you append `... RETURNING col /*LastInsertId*/` to your SQL, then it will be presented as LastInsertId. Note that you have to mark with a `/*LastInsertId*/` (case insensitive) your `RETURNING` part, to allow ora to return the last column as `LastInsertId()`. That column must fit in `int64`, though! You may access an Oracle database through the database/sql package. The database/sql package offers a consistent API across different databases, connection pooling, thread safety and a set of common Go types. database/sql makes working with Oracle straight-forward. The ora package implements interfaces in the database/sql/driver package enabling database/sql to communicate with an Oracle database. Using database/sql ensures you never have to call the ora package directly. When using database/sql, the mapping between Go types and Oracle types may be changed slightly. The database/sql package has strict expectations on Go return types. The Go-to-Oracle type mapping for database/sql is: The "ora" driver is automatically registered for use with sql.Open, but you can call ora.SetCfg to set the used configuration options including statement configuration and Rset configuration. When configuring the driver for use with database/sql, keep in mind that database/sql has strict Go type-to-Oracle type mapping expectations. The ora package allows programming with pointers, slices, nullable types, numerics of various sizes, Oracle-specific types, Go return type configuration, and Oracle abstractions such as environment, server and session. When working with the ora package directly, the API is slightly different than database/sql. When using the ora package directly, the mapping between Go types and Oracle types may be changed. The Go-to-Oracle type mapping for the ora package is: An example of using the ora package directly: Pointers may be used to capture out-bound values from a SQL statement such as an insert or stored procedure call. For example, a numeric pointer captures an identity value: A string pointer captures an out parameter from a stored procedure: Slices may be used to insert multiple records with a single insert statement: The ora package provides nullable Go types to support DML operations such as insert and select. The nullable Go types provided by the ora package are Int64, Int32, Int16, Int8, Uint64, Uint32, Uint16, Uint8, Float64, Float32, Time, IntervalYM, IntervalDS, String, Bool, Binary and Bfile. For example, you may insert nullable Strings and select nullable Strings: The `Stmt.Prep` method is variadic accepting zero or more `GoColumnType` which define a Go return type for a select-list column. For example, a Prep call can be configured to return an int64 and a nullable Int64 from the same column: Go numerics of various sizes are supported in DML operations. The ora package supports int64, int32, int16, int8, uint64, uint32, uint16, uint8, float64 and float32. For example, you may insert a uint16 and select numerics of various sizes: If a non-nullable type is defined for a nullable column returning null, the Go type's zero value is returned. GoColumnTypes defined by the ora package are: When Stmt.Prep doesn't receive a GoColumnType, or receives an incorrect GoColumnType, the default value defined in RsetCfg is used. EnvCfg, SrvCfg, SesCfg, StmtCfg and RsetCfg are the main configuration structs. EnvCfg configures aspects of an Env. SrvCfg configures aspects of a Srv. SesCfg configures aspects of a Ses. StmtCfg configures aspects of a Stmt. RsetCfg configures aspects of Rset. StmtCfg and RsetCfg have the most options to configure. RsetCfg defines the default mapping between an Oracle select-list column and a Go type. StmtCfg may be set in an EnvCfg, SrvCfg, SesCfg and StmtCfg. RsetCfg may be set in a Stmt. EnvCfg.StmtCfg, SrvCfg.StmtCfg, SesCfg.StmtCfg may optionally be specified to configure a statement. If StmtCfg isn't specified default values are applied. EnvCfg.StmtCfg, SrvCfg.StmtCfg, SesCfg.StmtCfg cascade to new descendent structs. When ora.OpenEnv() is called a specified EnvCfg is used or a default EnvCfg is created. Creating a Srv with env.OpenSrv() will use SrvCfg.StmtCfg if it is specified; otherwise, EnvCfg.StmtCfg is copied by value to SrvCfg.StmtCfg. Creating a Ses with srv.OpenSes() will use SesCfg.StmtCfg if it is specified; otherwise, SrvCfg.StmtCfg is copied by value to SesCfg.StmtCfg. Creating a Stmt with ses.Prep() will use SesCfg.StmtCfg if it is specified; otherwise, a new StmtCfg with default values is set on the Stmt. Call Stmt.Cfg() to change a Stmt's configuration. An Env may contain multiple Srv. A Srv may contain multiple Ses. A Ses may contain multiple Stmt. A Stmt may contain multiple Rset. Setting a RsetCfg on a StmtCfg does not cascade through descendent structs. Configuration of Stmt.Cfg takes effect prior to calls to Stmt.Exe and Stmt.Qry; consequently, any updates to Stmt.Cfg after a call to Stmt.Exe or Stmt.Qry are not observed. One configuration scenario may be to set a server's select statements to return nullable Go types by default: Another scenario may be to configure the runes mapped to bool values: Oracle-specific types offered by the ora package are ora.Rset, ora.IntervalYM, ora.IntervalDS, ora.Raw, ora.Lob and ora.Bfile. ora.Rset represents an Oracle SYS_REFCURSOR. ora.IntervalYM represents an Oracle INTERVAL YEAR TO MONTH. ora.IntervalDS represents an Oracle INTERVAL DAY TO SECOND. ora.Raw represents an Oracle RAW or LONG RAW. ora.Lob may represent an Oracle BLOB or Oracle CLOB. And ora.Bfile represents an Oracle BFILE. ROWID columns are returned as strings and don't have a unique Go type. #### LOBs The default for SELECTing [BC]LOB columns is a safe Bin or S, which means all the contents of the LOB is slurped into memory and returned as a []byte or string. The DefaultLOBFetchLen says LOBs are prefetched only a minimal way, to minimize extra memory usage - you can override this using `stmt.SetCfg(stmt.Cfg().SetLOBFetchLen(100))`. If you want more control, you can use ora.L in Prep, Qry or `ses.SetCfg(ses.Cfg().SetBlob(ora.L))`. But keep in mind that Oracle restricts the use of LOBs: it is forbidden to do ANYTHING while reading the LOB! No another query, no exec, no close of the Rset - even *advance* to the next record in the result set is forbidden! Failing to adhere these rules results in "Invalid handle" and ORA-03127 errors. You cannot start reading another LOB till you haven't finished reading the previous LOB, not even in the same row! Failing this results in ORA-24804! For examples, see [z_lob_test.go](z_lob_test.go). #### Rset Rset is used to obtain Go values from a SQL select statement. Methods Rset.Next, Rset.NextRow, and Rset.Len are available. Fields Rset.Row, Rset.Err, Rset.Index, and Rset.ColumnNames are also available. The Next method attempts to load data from an Oracle buffer into Row, returning true when successful. When no data is available, or if an error occurs, Next returns false setting Row to nil. Any error in Next is assigned to Err. Calling Next increments Index and method Len returns the total number of rows processed. The NextRow method is convenient for returning a single row. NextRow calls Next and returns Row. ColumnNames returns the names of columns defined by the SQL select statement. Rset has two usages. Rset may be returned from Stmt.Qry when prepared with a SQL select statement: Or, *Rset may be passed to Stmt.Exe when prepared with a stored procedure accepting an OUT SYS_REFCURSOR parameter: Stored procedures with multiple OUT SYS_REFCURSOR parameters enable a single Exe call to obtain multiple Rsets: The types of values assigned to Row may be configured in StmtCfg.Rset. For configuration to take effect, assign StmtCfg.Rset prior to calling Stmt.Qry or Stmt.Exe. Rset prefetching may be controlled by StmtCfg.PrefetchRowCount and StmtCfg.PrefetchMemorySize. PrefetchRowCount works in coordination with PrefetchMemorySize. When PrefetchRowCount is set to zero only PrefetchMemorySize is used; otherwise, the minimum of PrefetchRowCount and PrefetchMemorySize is used. The default uses a PrefetchMemorySize of 134MB. Opening and closing Rsets is managed internally. Rset does not have an Open method or Close method. IntervalYM may be be inserted and selected: IntervalDS may be be inserted and selected: Transactions on an Oracle server are supported. DML statements auto-commit unless a transaction has started: Ses.PrepAndExe, Ses.PrepAndQry, Ses.Ins, Ses.Upd, and Ses.Sel are convenient one-line methods. Ses.PrepAndExe offers a convenient one-line call to Ses.Prep and Stmt.Exe. Ses.PrepAndQry offers a convenient one-line call to Ses.Prep and Stmt.Qry. Ses.Ins composes, prepares and executes a sql INSERT statement. Ses.Ins is useful when you have to create and maintain a simple INSERT statement with a long list of columns. As table columns are added and dropped over the lifetime of a table Ses.Ins is easy to read and revise. Ses.Upd composes, prepares and executes a sql UPDATE statement. Ses.Upd is useful when you have to create and maintain a simple UPDATE statement with a long list of columns. As table columns are added and dropped over the lifetime of a table Ses.Upd is easy to read and revise. Ses.Sel composes, prepares and queries a sql SELECT statement. Ses.Sel is useful when you have to create and maintain a simple SELECT statement with a long list of columns that have non-default GoColumnTypes. As table columns are added and dropped over the lifetime of a table Ses.Sel is easy to read and revise. The Ses.Ping method checks whether the client's connection to an Oracle server is valid. A call to Ping requires an open Ses. Ping will return a nil error when the connection is fine: The Srv.Version method is available to obtain the Oracle server version. A call to Version requires an open Ses: Further code examples are available in the [example file](https://github.com/rana/ora/blob/master/z_example_test.go), test files and [samples folder](https://github.com/rana/ora/tree/master/samples). The ora package provides a simple ora.Logger interface for logging. Logging is disabled by default. Specify one of three optional built-in logging packages to enable logging; or, use your own logging package. ora.Cfg().Log offers various options to enable or disable logging of specific ora driver methods. For example: To use the standard Go log package: which produces a sample log of: Messages are prefixed with 'ORA I' for information or 'ORA E' for an error. The log package is configured to write to os.Stderr by default. Use the ora/lg.Std type to configure an alternative io.Writer. To use the glog package: which produces a sample log of: To use the log15 package: which produces a sample log of: See https://github.com/rana/ora/tree/master/samples/lg15/main.go for sample code which uses the log15 package. Tests are available and require some setup. Setup varies depending on whether the Oracle server is configured as a container database or non-container database. It's simpler to setup a non-container database. An example for each setup is explained. Non-container test database setup steps: Container test database setup steps: Some helpful SQL maintenance statements: Run the tests. database/sql method Stmt.QueryRow is not supported. Go 1.6 introduced stricter cgo (call C from Go) rules, and introduced runtime checks. This is good, as the possibility of C code corrupting Go code is almost completely eliminated, but it also means a severe call overhead grow. [Sometimes](https://groups.google.com/forum/#!topic/golang-nuts/ccMkPG6Bi5k) this can be 22x the go 1.5.3 call time! So if you need performance more than correctness, start your programs with "GODEBUG=cgocheck=0" environment setting. Copyright 2017 Rana Ian, Tamás Gulácsi. All rights reserved. Use of this source code is governed by The MIT License found in the accompanying LICENSE file.
Package nlp provides implementations of selected machine learning algorithms for natural language processing of text corpora. The primary focus is the statistical semantics of plain-text documents supporting semantic analysis and retrieval of semantically similar documents. The package makes use of the Gonum (http://http//www.gonum.org/) library for linear algebra and scientific computing with some inspiration taken from Python's scikit-learn (http://scikit-learn.org/stable/) and Gensim(https://radimrehurek.com/gensim/) The primary intended use case is to support document input as text strings encoded as a matrix of numerical feature vectors called a `term document matrix`. Each column in the matrix corresponds to a document in the corpus and each row corresponds to a unique term occurring in the corpus. The individual elements within the matrix contain the frequency with which each term occurs within each document (referred to as `term frequency`). Whilst textual data from document corpora are the primary intended use case, the algorithms can be used with other types of data from other sources once encoded (vectorised) into a suitable matrix e.g. image data, sound data, users/products, etc. These matrices can be processed and manipulated through the application of additional transformations for weighting features, identifying relationships or optimising the data for analysis, information retrieval and/or predictions. Typically the algorithms in this package implement one of three primary interfaces: One of the implementations of Vectoriser is Pipeline which can be used to wire together pipelines composed of a Vectoriser and one or more Transformers arranged in serial so that the output from each stage forms the input of the next. This can be used to construct a classic LSI (Latent Semantic Indexing) pipeline (vectoriser -> TF.IDF weighting -> Truncated SVD): Whilst they take different inputs, both Vectorisers and Transformers have 3 primary methods:
Package gomarkdoc formats documentation for one or more packages as markdown for usage outside of the main https://pkg.go.dev site. It supports custom templates for tweaking representation of documentation at fine-grained levels, exporting both exported and unexported symbols, and custom formatters for different backends. If you want to use this package as a command-line tool, you can install the command by running the following on go 1.16+: For older versions of go, you can install using the following method instead: The command line tool supports configuration for all of the features of the importable package: The gomarkdoc command processes each of the provided packages, generating documentation for the package in markdown format and writing it to console. For example, if you have a package in your current directory and want to send it to a documentation markdown file, you might do something like this: The gomarkdoc tool supports generating documentation for both local packages and remote ones. To specify a local package, start the name of the package with a period (.) or specify an absolute path on the filesystem. All other package signifiers are assumed to be remote packages. You may specify both local and remote packages in the same command invocation as separate arguments. If you have a project with many packages but you want to skip documentation generation for some, you can use the --exclude-dirs option. This will remove any matching directories from the list of directories to process. Excluded directories are specified using the same pathing syntax as the packages to process. Multiple expressions may be comma-separated or specified by using the --exclude-dirs flag multiple times. For example, in this repository we generate documentation for the entire project while excluding our test packages by running: By default, the documentation generated by the gomarkdoc command is sent to standard output, where it can be redirected to a file. This can be useful if you want to perform additional modifications to the documentation or send it somewhere other than a file. However, keep in mind that there are some inconsistencies in how various shells/platforms handle redirected command output (for example, Powershell encodes in UTF-16, not UTF-8). As a result, the --output option described below is recommended for most use cases. If you want to redirect output for each processed package to a file, you can provide the --output/-o option, which accepts a template specifying how to generate the path of the output file. A common usage of this option is when generating README documentation for a package with subpackages (which are supported via the ... signifier as in other parts of the golang toolchain). In addition, this option provides consistent behavior across platforms and shells: You can see all of the data available to the output template in the PackageSpec struct in the github.com/princjef/gomarkdoc/cmd/gomarkdoc package. The documentation information that is output is formatted using a series of text templates for the various components of the overall documentation which get generated. Higher level templates contain lower level templates, but any template may be replaced with an override template using the --template/-t option. The full list of templates that may be overridden are: file: generates documentation for a file containing one or more packages, depending on how the tool is configured. This is the root template for documentation generation. package: generates documentation for an entire package. type: generates documentation for a single type declaration, as well as any related functions/methods. func: generates documentation for a single function or method. It may be referenced from within a type, or directly in the package, depending on nesting. value: generates documentation for a single variable or constant declaration block within a package. index: generates an index of symbols within a package, similar to what is seen for godoc.org. The index links to types, funcs, variables, and constants generated by other templates, so it may need to be overridden as well if any of those templates are changed in a material way. example: generates documentation for a single example for a package or one of its symbols. The example is generated alongside whichever symbol it represents, based on the standard naming conventions outlined in https://blog.golang.org/examples#TOC_4. doc: generates the freeform documentation block for any of the above structures that can contain a documentation section. import: generates the import code used to pull in a package. Overriding with the --template-file option uses a key-value pair mapping a template name to the file containing the contents of the override template to use. Specified template files must exist: As with the godoc tool itself, only exported symbols will be shown in documentation. This can be expanded to include all symbols in a package by adding the --include-unexported/-u flag. If you want to blend the documentation generated by gomarkdoc with your own hand-written markdown, you can use the --embed/-e flag to change the gomarkdoc tool into an append/embed mode. When documentation is generated, gomarkdoc looks for a file in the location where the documentation is to be written and embeds the documentation if present. Otherwise, the documentation is appended to the end of the file. When running with embed mode enabled, gomarkdoc will look for either this single comment: Or the following pair of comments (in which case all content in between is replaced): If you would like to include files that are part of a build tag, you can specify build tags with the --tags flag. Tags are also supported through GOFLAGS, though command line and configuration file definitions override tags specified through GOFLAGS. You can also run gomarkdoc in a verification mode with the --check/-c flag. This is particularly useful for continuous integration when you want to make sure that a commit correctly updated the generated documentation. This flag is only supported when the --output/-o flag is specified, as the file provided there is what the tool is checking: If you're experiencing difficulty with gomarkdoc or just want to get more information about how it's executing underneath, you can add -v to show more logs. This can be chained a second time to show even more verbose logs: Some features of gomarkdoc rely on being able to detect information from the git repository containing the project. Since individual local git repositories may be configured differently from person to person, you may want to manually specify the information for the repository to remove any inconsistencies. This can be achieved with the --repository.url, --repository.default-branch and --repository.path options. For example, this repository would be configured with: If you want to reuse configuration options across multiple invocations, you can specify a file in the folder where you invoke gomarkdoc containing configuration information that you would otherwise provide on the command line. This file may be a JSON, TOML, YAML, HCL, env, or Java properties file, but the name is expected to start with .gomarkdoc (e.g. .gomarkdoc.yml). All configuration options are available with the camel-cased form of their long name (e.g. --include-unexported becomes includeUnexported). Template overrides are specified as a map, rather than a set of key-value pairs separated by =. Options provided on the command line override those provided in the configuration file if an option is present in both. While most users will find the command line utility sufficient for their needs, this package may also be used programmatically by installing it directly, rather than its command subpackage. The programmatic usage provides more flexibility when selecting what packages to work with and what components to generate documentation for. A common usage will look something like this: This project uses itself to generate the README files in github.com/princjef/gomarkdoc and its subdirectories. To see the commands that are run to generate documentation for this repository, take a look at the Doc() and DocVerify() functions in magefile.go and the .gomarkdoc.yml file in the root of this repository. To run these commands in your own project, simply replace `go run ./cmd/gomarkdoc` with `gomarkdoc`. Know of another project that is using gomarkdoc? Open an issue with a description of the project and link to the repository and it might be featured here!
Package restlayer is an API framework heavily inspired by the excellent Python Eve (http://python-eve.org/). It helps you create a comprehensive, customizable, and secure REST (graph) API on top of pluggable backend storages with no boiler plate code so can focus on your business logic. Implemented as a net/http middleware, it plays well with other middleware like CORS (http://github.com/rs/cors) and is net/context aware thanks to xhandler. REST Layer is an opinionated framework. Unlike many API frameworks, you don’t directly control the routing and you don’t have to write handlers. You just define resources and sub-resources with a schema, the framework automatically figures out what routes to generate behind the scene. You don’t have to take care of the HTTP headers and response, JSON encoding, etc. either. REST layer handles HTTP conditional requests, caching, integrity checking for you. A powerful and extensible validation engine make sure that data comes pre-validated to your custom storage handlers. Generic resource handlers for MongoDB (http://github.com/rs/rest-layer-mongo), ElasticSearch (http://github.com/rs/rest-layer-es) and other databases are also available so you have few to no code to write to make the whole system work. Moreover, REST Layer let you create a graph API by linking resources between them. Thanks to its advanced field selection syntax (and coming support of GraphQL), you can gather resources and their dependencies in a single request, saving you from costly network roundtrips. REST Layer is composed of several sub-packages: See https://github.com/rs/rest-layer/blob/master/README.md for full REST Layer documentation.
Package fpdf implements a PDF document generator with high level support for text, drawing and images. - UTF-8 support - Choice of measurement unit, page format and margins - Page header and footer management - Automatic page breaks, line breaks, and text justification - Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images - Colors, gradients and alpha channel transparency - Outline bookmarks - Internal and external links - TrueType, Type1 and encoding support - Page compression - Lines, Bézier curves, arcs, and ellipses - Rotation, scaling, skewing, translation, and mirroring - Clipping - Document protection - Layers - Templates - Barcodes - Charting facility - Import PDFs as templates go-pdf/fpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. go-pdf/fpdf supports UTF-8 TrueType fonts and “right-to-left” languages. Note that Chinese, Japanese, and Korean characters may not be included in many general purpose fonts. For these languages, a specialized font (for example, NotoSansSC for simplified Chinese) can be used. Also, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running go test ./... is the production of a number of example PDFs. These can be found in the go-pdf/fpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you’ll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the go-pdf/fpdf/pdf/reference directory and if the third argument to ComparePDFFiles() in internal/example/example.go is true. (By default it is false.) The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). You should use AddUTF8Font() or AddUTF8FontFromBytes() to add a TrueType UTF-8 encoded font. Use RTL() and LTR() methods switch between “right-to-left” and “left-to-right” mode. In order to use a different non-UTF-8 TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run “go build”. This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include Google Fonts and DejaVu Fonts. The draw2d package is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the contrib directory. Here are guidelines for making submissions. Your change should - be compatible with the MIT License - be properly documented - be formatted with go fmt - include an example in fpdf_test.go if appropriate - conform to the standards of golint and go vet, that is, golint . and go vet . should not generate any warnings - not diminish test coverage Pull requests are the preferred means of accepting your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package’s code and documentation are closely derived from the FPDF library created by Olivier Plathey, and a number of font and image resources are copied directly from it. Bruno Michel has provided valuable assistance with the code. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image’s extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Dan Meyers added support for embedded JavaScript. David Fish added a generic alias-replacement function to enable, among other things, table of contents functionality. Andy Bakun identified and corrected a problem in which the internal catalogs were not sorted stably. Paul Montag added encoding and decoding functionality for templates, including images that are embedded in templates; this allows templates to be stored independently of gofpdf. Paul also added support for page boxes used in printing PDF documents. Wojciech Matusiak added supported for word spacing. Artem Korotkiy added support of UTF-8 fonts. Dave Barnes added support for imported objects and templates. Brigham Thompson added support for rounded rectangles. Joe Westcott added underline functionality and optimized image storage. Benoit KUGLER contributed support for rectangles with corners of unequal radius, modification times, and for file attachments and annotations. - Remove all legacy code page font support; use UTF-8 exclusively - Improve test coverage as reported by the coverage tool. Example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.SummaryCompare() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
Package paypal provides a wrapper to PayPal API (https://developer.paypal.com/webapps/developer/docs/api/). The first thing you do is to create a Client (you can select API base URL using paypal contants). Then you can get an access token from PayPal: After you have an access token you can call built-in functions to get data from PayPal. paypal will assign all responses to go structures.
Package with implementation of methods and structures for work with Tarantool instance. Example demonstrates how to use custom (un)packing with typed selects and function calls. You can specify user-defined packing/unpacking functions for your types. This allows you to store complex structures within a tuple and may speed up your requests. Alternatively, you can just instruct the msgpack library to encode your structure as an array. This is safe "magic". It is easier to implement than a custom packer/unpacker, but it will work slower.
Nucular is an immediate mode GUI library for Go, its implementation is a partial source port of Nuklear [0] by Micha Mettke. For a brief introduction to Immediate Mode GUI see [1] A window can be opened with the following three lines of code: The first line creates the MasterWindow object and sets its flags (usually 0 is fine) and updatefn as the update function. Updatefn will be responsible for drawing the contents of the window and handling the GUI logic (see the "Window Update and layout" section). The second line configures the theme, the font (passing nil will use the default font face) and the default scaling factor (see the "Scaling" section). The third line opens the window and starts its event loop, updatefn will be called whenever the window needs to be redrawn, this is usually only in response to mouse and keyboard events, if you want the window to be redrawn you can also manually call wnd.Changed(). The update function is responsible for drawing the contents of the window as well as handling user events, this is usually done by calling methods of nucular.Window. For example, drawing a simple text button is done with this code: Widgets are laid out left to right and top to bottom, each row has a layout that can be configured calling the methods of nucular.rowConstructor (an instance of which can be obtained by calling the `nucular.Window.Row` or `nucular.Window.RowScaled`). There are three main row layout modes: Static: in this mode the columns of the row have a fixed, user defined, width. This row layout can be selected calling Static or StaticScaled Dynamic: in this mode the columns of the row have a width proportional to the total width of the window. This row layout can be selected calling Dynamic, DynamicScaled or Ratio Space: in this mode widgets are positioned and sized arbitrarily. This row layout can be selected calling SpaceBegin or SpaceBeginRatio, once this row layout is selected widgets can be positioned using LayoutSpacePush or LayoutSpacePushRatio When calling SetStyle you can specify a scaling factor, this will be used to scale the sizes in the style argument and also all the size arguments for the methods of rowConstructor. Links
Package goncurses is a new curses (ncurses) library for the Go programming language. It implements all the ncurses extension libraries: form, menu and panel. Minimal operation would consist of initializing the display: It is important to always call End() before your program exits. If you fail to do so, the terminal will not perform properly and will either need to be reset or restarted completely. CAUTION: Calls to ncurses functions are normally not atomic nor reentrant and therefore extreme care should be taken to ensure ncurses functions are not called concurrently. Specifically, never write data to the same window concurrently nor accept input and send output to the same window as both alter the underlying C data structures in a non safe manner. Ideally, you should structure your program to ensure all ncurses related calls happen in a single goroutine. This is probably most easily achieved via channels and Go's built-in select. Alternatively, or additionally, you can use a mutex to protect any calls in multiple goroutines from happening concurrently. Failure to do so will result in unpredictable and undefined behaviour in your program. The examples directory contains demonstrations of many of the capabilities goncurses can provide.
Package jp offers a highly performant json selector in the style of the jq command line Usage of this package involves the concept of an Op. An Op is a transformation that converts a []byte into a []byte. To get started, use the Parse function to obtain an Op. This will create an Op that will accept a JSON object in []byte format and return the value associated with "key." For example: Will print the string "value". The goal is to support all the select operations supported by jq's command line namesake.