Security News
Research
Data Theft Repackaged: A Case Study in Malicious Wrapper Packages on npm
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
@azure/keyvault-keys
Advanced tools
@azure/keyvault-keys is an npm package that provides a client library for managing keys in Azure Key Vault. It allows you to create, import, update, delete, and manage keys, as well as perform cryptographic operations such as encryption, decryption, signing, and verifying.
Create a Key
This feature allows you to create a new key in Azure Key Vault. The code sample demonstrates how to create an RSA key using the KeyClient.
const { DefaultAzureCredential } = require('@azure/identity');
const { KeyClient } = require('@azure/keyvault-keys');
const credential = new DefaultAzureCredential();
const keyClient = new KeyClient('https://<your-key-vault-name>.vault.azure.net', credential);
async function createKey() {
const keyName = 'myKey';
const result = await keyClient.createKey(keyName, 'RSA');
console.log('Key created:', result);
}
createKey();
Get a Key
This feature allows you to retrieve an existing key from Azure Key Vault. The code sample demonstrates how to get a key by its name using the KeyClient.
const { DefaultAzureCredential } = require('@azure/identity');
const { KeyClient } = require('@azure/keyvault-keys');
const credential = new DefaultAzureCredential();
const keyClient = new KeyClient('https://<your-key-vault-name>.vault.azure.net', credential);
async function getKey() {
const keyName = 'myKey';
const result = await keyClient.getKey(keyName);
console.log('Key retrieved:', result);
}
getKey();
Delete a Key
This feature allows you to delete an existing key from Azure Key Vault. The code sample demonstrates how to start the deletion process for a key using the KeyClient.
const { DefaultAzureCredential } = require('@azure/identity');
const { KeyClient } = require('@azure/keyvault-keys');
const credential = new DefaultAzureCredential();
const keyClient = new KeyClient('https://<your-key-vault-name>.vault.azure.net', credential);
async function deleteKey() {
const keyName = 'myKey';
const result = await keyClient.beginDeleteKey(keyName);
console.log('Key deletion started:', result);
}
deleteKey();
Encrypt Data
This feature allows you to encrypt data using a key stored in Azure Key Vault. The code sample demonstrates how to encrypt data using the CryptographyClient.
const { DefaultAzureCredential } = require('@azure/identity');
const { KeyClient, CryptographyClient } = require('@azure/keyvault-keys');
const credential = new DefaultAzureCredential();
const keyClient = new KeyClient('https://<your-key-vault-name>.vault.azure.net', credential);
async function encryptData() {
const keyName = 'myKey';
const key = await keyClient.getKey(keyName);
const cryptoClient = new CryptographyClient(key.id, credential);
const plaintext = Buffer.from('my secret data');
const result = await cryptoClient.encrypt('RSA-OAEP', plaintext);
console.log('Encrypted data:', result.result);
}
encryptData();
Decrypt Data
This feature allows you to decrypt data using a key stored in Azure Key Vault. The code sample demonstrates how to decrypt data using the CryptographyClient.
const { DefaultAzureCredential } = require('@azure/identity');
const { KeyClient, CryptographyClient } = require('@azure/keyvault-keys');
const credential = new DefaultAzureCredential();
const keyClient = new KeyClient('https://<your-key-vault-name>.vault.azure.net', credential);
async function decryptData() {
const keyName = 'myKey';
const key = await keyClient.getKey(keyName);
const cryptoClient = new CryptographyClient(key.id, credential);
const encryptedData = Buffer.from('<your-encrypted-data>', 'base64');
const result = await cryptoClient.decrypt('RSA-OAEP', encryptedData);
console.log('Decrypted data:', result.result.toString());
}
decryptData();
The aws-sdk package provides a comprehensive set of tools for interacting with AWS services, including AWS Key Management Service (KMS). It allows you to create, manage, and use cryptographic keys in AWS. Compared to @azure/keyvault-keys, aws-sdk offers broader functionality across various AWS services but may have a steeper learning curve for those only interested in key management.
The node-jose package is a JavaScript library for JSON Object Signing and Encryption (JOSE) and provides tools for working with cryptographic keys and performing cryptographic operations. While it is not tied to a specific cloud provider, it offers a more general-purpose approach to key management and cryptographic operations compared to @azure/keyvault-keys.
Azure Key Vault is a service that allows you to encrypt authentication keys, storage account keys, data encryption keys, .pfx files, and passwords by using secured keys. If you would like to know more about Azure Key Vault, you may want to review: What is Azure Key Vault?
Azure Key Vault Managed HSM is a fully-managed, highly-available, single-tenant, standards-compliant cloud service that enables you to safeguard cryptographic keys for your cloud applications using FIPS 140-2 Level 3 validated HSMs. If you would like to know more about Azure Key Vault Managed HSM, you may want to review: What is Azure Key Vault Managed HSM?
The Azure Key Vault key library client supports RSA keys, Elliptic Curve (EC) keys, as well as Symmetric (oct) keys when running against a managed HSM, each with corresponding support in hardware security modules (HSM). It offers operations to create, retrieve, update, delete, purge, backup, restore, and list the keys and its versions.
Use the client library for Azure Key Vault Keys in your Node.js application to:
Using the cryptography client available in this library you also have access to:
Note: This package cannot be used in the browser due to Azure Key Vault service limitations, please refer to this document for guidance.
Key links:
Install the Azure Key Vault Key client library using npm
npm install @azure/keyvault-keys
Azure Key Vault clients authenticate using the Azure identity library. Install it as well using npm
npm install @azure/identity
TypeScript users need to have Node type definitions installed:
npm install @types/node
You also need to enable compilerOptions.allowSyntheticDefaultImports
in your tsconfig.json. Note that if you have enabled compilerOptions.esModuleInterop
, allowSyntheticDefaultImports
is enabled by default. See TypeScript's compiler options handbook for more information.
The Key Vault service relies on Azure Active Directory to authenticate requests to its APIs. The @azure/identity
package provides a variety of credential types that your application can use to do this. The README for @azure/identity
provides more details and samples to get you started.
In order to interact with the Azure Key Vault service, you will need to create an instance of the KeyClient
class, a vault url and a credential object. The examples shown in this document use a credential object named DefaultAzureCredential
, which is appropriate for most scenarios, including local development and production environments. Additionally, we recommend using a managed identity for authentication in production environments.
You can find more information on different ways of authenticating and their corresponding credential types in the Azure Identity documentation.
Here's a quick example. First, import DefaultAzureCredential
and KeyClient
:
const { DefaultAzureCredential } = require("@azure/identity");
const { KeyClient } = require("@azure/keyvault-keys");
Once these are imported, we can next connect to the Key Vault service:
const { DefaultAzureCredential } = require("@azure/identity");
const { KeyClient } = require("@azure/keyvault-keys");
const credential = new DefaultAzureCredential();
// Build the URL to reach your key vault
const vaultName = "<YOUR KEYVAULT NAME>";
const url = `https://${vaultName}.vault.azure.net`; // or `https://${vaultName}.managedhsm.azure.net` for managed HSM.
// Lastly, create our keys client and connect to the service
const client = new KeyClient(url, credential);
By default, this package uses the latest Azure Key Vault service version which is 7.2
. You can change the service version being used by setting the option serviceVersion
in the client constructor as shown below:
const { DefaultAzureCredential } = require("@azure/identity");
const { KeyClient } = require("@azure/keyvault-keys");
const credential = new DefaultAzureCredential();
const vaultName = "<YOUR KEYVAULT NAME>";
const url = `https://${vaultName}.vault.azure.net`;
// Change the Azure Key Vault service API version being used via the `serviceVersion` option
const client = new KeyClient(url, credential, {
serviceVersion: "7.0", // Or 7.1
});
The following sections provide code snippets that cover some of the common tasks using Azure Key Vault Keys. The scenarios that are covered here consist of:
createKey
creates a Key to be stored in the Azure Key Vault. If a key with the same name already exists, then a new version of the key is created.
const { DefaultAzureCredential } = require("@azure/identity");
const { KeyClient } = require("@azure/keyvault-keys");
const credential = new DefaultAzureCredential();
const vaultName = "<YOUR KEYVAULT NAME>";
const url = `https://${vaultName}.vault.azure.net`;
const client = new KeyClient(url, credential);
const keyName = "MyKeyName";
async function main() {
const result = await client.createKey(keyName, "RSA");
console.log("result: ", result);
}
main();
The second parameter sent to createKey
is the type of the key. The type of keys that are supported will depend on the SKU and whether you are using an Azure Key Vault or an Azure Managed HSM. For an up-to-date list of supported key types please refer to About keys
The simplest way to read keys back from the vault is to get a key by name. This will retrieve the most recent version of the key. You can optionally get a different version of the key if you specify it as part of the optional parameters.
getKey
retrieves a key previous stores in the Key Vault.
const { DefaultAzureCredential } = require("@azure/identity");
const { KeyClient } = require("@azure/keyvault-keys");
const credential = new DefaultAzureCredential();
const vaultName = "<YOUR KEYVAULT NAME>";
const url = `https://${vaultName}.vault.azure.net`;
const client = new KeyClient(url, credential);
const keyName = "MyKeyName";
async function main() {
const latestKey = await client.getKey(keyName);
console.log(`Latest version of the key ${keyName}: `, latestKey);
const specificKey = await client.getKey(keyName, { version: latestKey.properties.version! });
console.log(`The key ${keyName} at the version ${latestKey.properties.version!}: `, specificKey);
}
main();
The following attributes can also be assigned to any key in a Key Vault:
tags
: Any set of key-values that can be used to search and filter keys.keyOps
: An array of the operations that this key will be able to perform (encrypt
, decrypt
, sign
, verify
, wrapKey
, unwrapKey
).enabled
: A boolean value that determines whether the key value can be read or not.notBefore
: A given date after which the key value can be retrieved.expires
: A given date after which the key value cannot be retrieved.An object with these attributes can be sent as the third parameter of
createKey
, right after the key's name and value, as follows:
const { DefaultAzureCredential } = require("@azure/identity");
const { KeyClient } = require("@azure/keyvault-keys");
const credential = new DefaultAzureCredential();
const vaultName = "<YOUR KEYVAULT NAME>";
const url = `https://${vaultName}.vault.azure.net`;
const client = new KeyClient(url, credential);
const keyName = "MyKeyName";
async function main() {
const result = await client.createKey(keyName, "RSA", {
enabled: false,
});
console.log("result: ", result);
}
main();
This will create a new version of the same key, which will have the latest provided attributes.
Attributes can also be updated to an existing key version with
updateKeyProperties
, as follows:
const { DefaultAzureCredential } = require("@azure/identity");
const { KeyClient } = require("@azure/keyvault-keys");
const credential = new DefaultAzureCredential();
const vaultName = "<YOUR KEYVAULT NAME>";
const url = `https://${vaultName}.vault.azure.net`;
const client = new KeyClient(url, credential);
const keyName = "MyKeyName";
async function main() {
const result = await client.createKey(keyName, "RSA");
await client.updateKeyProperties(keyName, result.properties.version, {
enabled: false,
});
}
main();
The beginDeleteKey
method starts the deletion of a key.
This process will happen in the background as soon as the necessary resources
are available.
const { DefaultAzureCredential } = require("@azure/identity");
const { KeyClient } = require("@azure/keyvault-keys");
const credential = new DefaultAzureCredential();
const vaultName = "<YOUR KEYVAULT NAME>";
const url = `https://${vaultName}.vault.azure.net`;
const client = new KeyClient(url, credential);
const keyName = "MyKeyName";
async function main() {
const poller = await client.beginDeleteKey(keyName);
await poller.pollUntilDone();
}
main();
If soft-delete is enabled for the Key Vault, this operation will only label the key as a deleted key. A deleted key can't be updated. They can only be read, recovered or purged.
const { DefaultAzureCredential } = require("@azure/identity");
const { KeyClient } = require("@azure/keyvault-keys");
const credential = new DefaultAzureCredential();
const vaultName = "<YOUR KEYVAULT NAME>";
const url = `https://${vaultName}.vault.azure.net`;
const client = new KeyClient(url, credential);
const keyName = "MyKeyName";
async function main() {
const poller = await client.beginDeleteKey(keyName);
// You can use the deleted key immediately:
const deletedKey = poller.getResult();
// The key is being deleted. Only wait for it if you want to restore it or purge it.
await poller.pollUntilDone();
// You can also get the deleted key this way:
await client.getDeletedKey(keyName);
// Deleted keys can also be recovered or purged:
// recoverDeletedKey also returns a poller, just like beginDeleteKey.
const recoverPoller = await client.beginRecoverDeletedKey(keyName);
await recoverPoller.pollUntilDone();
// And here is how to purge a deleted key
await client.purgeDeletedKey(keyName);
}
main();
Since Keys take some time to get fully deleted, beginDeleteKey
returns a Poller object that keeps track of the underlying Long Running
Operation according to our guidelines:
https://azure.github.io/azure-sdk/typescript_design.html#ts-lro
The received poller will allow you to get the deleted key by calling to poller.getResult()
.
You can also wait until the deletion finishes either by running individual service
calls until the key is deleted, or by waiting until the process is done:
const { DefaultAzureCredential } = require("@azure/identity");
const { KeyClient } = require("@azure/keyvault-keys");
const credential = new DefaultAzureCredential();
const vaultName = "<YOUR KEYVAULT NAME>";
const url = `https://${vaultName}.vault.azure.net`;
const client = new KeyClient(url, credential);
const keyName = "MyKeyName";
async function main() {
const poller = await client.beginDeleteKey(keyName);
// You can use the deleted key immediately:
let deletedKey = poller.getResult();
// Or you can wait until the key finishes being deleted:
deletedKey = await poller.pollUntilDone();
console.log(deletedKey);
}
main();
Another way to wait until the key is fully deleted is to do individual calls, as follows:
const { DefaultAzureCredential } = require("@azure/identity");
const { KeyClient } = require("@azure/keyvault-keys");
const { delay } = require("@azure/core-util");
const credential = new DefaultAzureCredential();
const vaultName = "<YOUR KEYVAULT NAME>";
const url = `https://${vaultName}.vault.azure.net`;
const client = new KeyClient(url, credential);
const keyName = "MyKeyName";
async function main() {
const poller = await client.beginDeleteKey(keyName);
while (!poller.isDone()) {
await poller.poll();
await delay(5000);
}
console.log(`The key ${keyName} is fully deleted`);
}
main();
Using the KeyClient, you can configure automatic key rotation for a key by specifying the rotation policy. In addition, KeyClient provides a method to rotate a key on-demand by creating a new version of the given key.
const { DefaultAzureCredential } = require("@azure/identity");
const { KeyClient } = require("@azure/keyvault-keys");
const url = `https://<YOUR KEYVAULT NAME>.vault.azure.net`;
const client = new KeyClient(url, new DefaultAzureCredential());
async function main() {
const keyName = "MyKeyName";
// Set the key's automated rotation policy to rotate the key 30 days before expiry.
const policy = await client.updateKeyRotationPolicy(keyName, {
lifetimeActions: [
{
action: "Rotate",
timeBeforeExpiry: "P30D",
},
],
// You may also specify the duration after which any newly rotated key will expire.
// In this case, any new key versions will expire after 90 days.
expiresIn: "P90D",
});
// You can get the current key rotation policy of a given key by calling the getKeyRotationPolicy method.
const currentPolicy = await client.getKeyRotationPolicy(keyName);
// Finally, you can rotate a key on-demand by creating a new version of the given key.
const rotatedKey = await client.rotateKey(keyName);
}
main();
Using the KeyClient, you can retrieve and iterate through all of the keys in an Azure Key Vault, as well as through all of the deleted keys and the versions of a specific key. The following API methods are available:
listPropertiesOfKeys
will list all of your non-deleted keys by their names, only
at their latest versions.listDeletedKeys
will list all of your deleted keys by their names,
only at their latest versions.listPropertiesOfKeyVersions
will list all the versions of a key based on a key
name.Which can be used as follows:
const { DefaultAzureCredential } = require("@azure/identity");
const { KeyClient } = require("@azure/keyvault-keys");
const credential = new DefaultAzureCredential();
const vaultName = "<YOUR KEYVAULT NAME>";
const url = `https://${vaultName}.vault.azure.net`;
const client = new KeyClient(url, credential);
const keyName = "MyKeyName";
async function main() {
for await (let keyProperties of client.listPropertiesOfKeys()) {
console.log("Key properties: ", keyProperties);
}
for await (let deletedKey of client.listDeletedKeys()) {
console.log("Deleted: ", deletedKey);
}
for await (let versionProperties of client.listPropertiesOfKeyVersions(keyName)) {
console.log("Version properties: ", versionProperties);
}
}
main();
All of these methods will return all of the available results at once. To
retrieve them by pages, add .byPage()
right after invoking the API method you
want to use, as follows:
const { DefaultAzureCredential } = require("@azure/identity");
const { KeyClient } = require("@azure/keyvault-keys");
const credential = new DefaultAzureCredential();
const vaultName = "<YOUR KEYVAULT NAME>";
const url = `https://${vaultName}.vault.azure.net`;
const client = new KeyClient(url, credential);
const keyName = "MyKeyName";
async function main() {
for await (let page of client.listPropertiesOfKeys().byPage()) {
for (let keyProperties of page) {
console.log("Key properties: ", keyProperties);
}
}
for await (let page of client.listDeletedKeys().byPage()) {
for (let deletedKey of page) {
console.log("Deleted key: ", deletedKey);
}
}
for await (let page of client.listPropertiesOfKeyVersions(keyName).byPage()) {
for (let versionProperties of page) {
console.log("Version: ", versionProperties);
}
}
}
main();
This library also offers a set of cryptographic utilities available through
CryptographyClient
. Similar to the KeyClient
, CryptographyClient
will
connect to Azure Key Vault with the provided set of credentials. Once
connected, CryptographyClient
can encrypt, decrypt, sign, verify, wrap keys,
and unwrap keys.
We can next connect to the key vault service just as we do with the KeyClient
.
We'll need to copy some settings from the key vault we are
connecting to into our environment variables. Once they are in our environment,
we can access them with the following code:
import { DefaultAzureCredential } from "@azure/identity";
import { KeyClient, CryptographyClient } from "@azure/keyvault-keys";
const credential = new DefaultAzureCredential();
const vaultName = "<YOUR KEYVAULT NAME>";
const url = `https://${vaultName}.vault.azure.net`;
const keysClient = new KeyClient(url, credential);
async function main() {
// Create or retrieve a key from the keyvault
let myKey = await keysClient.createKey("MyKey", "RSA");
// Lastly, create our cryptography client and connect to the service
const cryptographyClient = new CryptographyClient(myKey, credential);
}
main();
encrypt
will encrypt a message.
import { DefaultAzureCredential } from "@azure/identity";
import { KeyClient, CryptographyClient } from "@azure/keyvault-keys";
const credential = new DefaultAzureCredential();
const vaultName = "<YOUR KEYVAULT NAME>";
const url = `https://${vaultName}.vault.azure.net`;
const keysClient = new KeyClient(url, credential);
async function main() {
let myKey = await keysClient.createKey("MyKey", "RSA");
const cryptographyClient = new CryptographyClient(myKey.id, credential);
const encryptResult = await cryptographyClient.encrypt({
algorithm: "RSA1_5",
plaintext: Buffer.from("My Message"),
});
console.log("encrypt result: ", encryptResult.result);
}
main();
decrypt
will decrypt an encrypted message.
import { DefaultAzureCredential } from "@azure/identity";
import { KeyClient, CryptographyClient } from "@azure/keyvault-keys";
const credential = new DefaultAzureCredential();
const vaultName = "<YOUR KEYVAULT NAME>";
const url = `https://${vaultName}.vault.azure.net`;
const keysClient = new KeyClient(url, credential);
async function main() {
let myKey = await keysClient.createKey("MyKey", "RSA");
const cryptographyClient = new CryptographyClient(myKey.id, credential);
const encryptResult = await cryptographyClient.encrypt({
algorithm: "RSA1_5",
plaintext: Buffer.from("My Message"),
});
console.log("encrypt result: ", encryptResult.result);
const decryptResult = await cryptographyClient.decrypt({
algorithm: "RSA1_5",
ciphertext: encryptResult.result,
});
console.log("decrypt result: ", decryptResult.result.toString());
}
main();
sign
will cryptographically sign the digest (hash) of a message with a signature.
import { DefaultAzureCredential } from "@azure/identity";
import { KeyClient, CryptographyClient } from "@azure/keyvault-keys";
import { createHash } from "crypto";
const credential = new DefaultAzureCredential();
const vaultName = "<YOUR KEYVAULT NAME>";
const url = `https://${vaultName}.vault.azure.net`;
const keysClient = new KeyClient(url, credential);
async function main() {
let myKey = await keysClient.createKey("MyKey", "RSA");
const cryptographyClient = new CryptographyClient(myKey, credential);
const signatureValue = "MySignature";
let hash = createHash("sha256");
let digest = hash.update(signatureValue).digest();
console.log("digest: ", digest);
const signResult = await cryptographyClient.sign("RS256", digest);
console.log("sign result: ", signResult.result);
}
main();
signData
will cryptographically sign a message with a signature.
import { DefaultAzureCredential } from "@azure/identity";
import { KeyClient, CryptographyClient } from "@azure/keyvault-keys";
const credential = new DefaultAzureCredential();
const vaultName = "<YOUR KEYVAULT NAME>";
const url = `https://${vaultName}.vault.azure.net`;
const keysClient = new KeyClient(url, credential);
async function main() {
let myKey = await keysClient.createKey("MyKey", "RSA");
const cryptographyClient = new CryptographyClient(myKey, credential);
const signResult = await cryptographyClient.signData("RS256", Buffer.from("My Message"));
console.log("sign result: ", signResult.result);
}
main();
verify
will cryptographically verify that the signed digest was signed with the given signature.
import { DefaultAzureCredential } from "@azure/identity";
import { KeyClient, CryptographyClient } from "@azure/keyvault-keys";
import { createHash } from "crypto";
const credential = new DefaultAzureCredential();
const vaultName = "<YOUR KEYVAULT NAME>";
const url = `https://${vaultName}.vault.azure.net`;
const keysClient = new KeyClient(url, credential);
async function main() {
let myKey = await keysClient.createKey("MyKey", "RSA");
const cryptographyClient = new CryptographyClient(myKey, credential);
const hash = createHash("sha256");
hash.update("My Message");
const digest = hash.digest();
const signResult = await cryptographyClient.sign("RS256", digest);
console.log("sign result: ", signResult.result);
const verifyResult = await cryptographyClient.verify("RS256", digest, signResult.result);
console.log("verify result: ", verifyResult.result);
}
main();
verifyData
will cryptographically verify that the signed message was signed with the given signature.
import { DefaultAzureCredential } from "@azure/identity";
import { KeyClient, CryptographyClient } from "@azure/keyvault-keys";
const credential = new DefaultAzureCredential();
const vaultName = "<YOUR KEYVAULT NAME>";
const url = `https://${vaultName}.vault.azure.net`;
const keysClient = new KeyClient(url, credential);
async function main() {
let myKey = await keysClient.createKey("MyKey", "RSA");
const cryptographyClient = new CryptographyClient(myKey, credential);
const buffer = Buffer.from("My Message");
const signResult = await cryptographyClient.signData("RS256", buffer);
console.log("sign result: ", signResult.result);
const verifyResult = await cryptographyClient.verifyData("RS256", buffer, signResult.result);
console.log("verify result: ", verifyResult.result);
}
main();
wrapKey
will wrap a key with an encryption layer.
import { DefaultAzureCredential } from "@azure/identity";
import { KeyClient, CryptographyClient } from "@azure/keyvault-keys";
const credential = new DefaultAzureCredential();
const vaultName = "<YOUR KEYVAULT NAME>";
const url = `https://${vaultName}.vault.azure.net`;
const keysClient = new KeyClient(url, credential);
async function main() {
let myKey = await keysClient.createKey("MyKey", "RSA");
const cryptographyClient = new CryptographyClient(myKey, credential);
const wrapResult = await cryptographyClient.wrapKey("RSA-OAEP", Buffer.from("My Key"));
console.log("wrap result:", wrapResult.result);
}
main();
unwrapKey
will unwrap a wrapped key.
import { DefaultAzureCredential } from "@azure/identity";
import { KeyClient, CryptographyClient } from "@azure/keyvault-keys";
const credential = new DefaultAzureCredential();
const vaultName = "<YOUR KEYVAULT NAME>";
const url = `https://${vaultName}.vault.azure.net`;
const keysClient = new KeyClient(url, credential);
async function main() {
let myKey = await keysClient.createKey("MyKey", "RSA");
const cryptographyClient = new CryptographyClient(myKey, credential);
const wrapResult = await cryptographyClient.wrapKey("RSA-OAEP", Buffer.from("My Key"));
console.log("wrap result:", wrapResult.result);
const unwrapResult = await cryptographyClient.unwrapKey("RSA-OAEP", wrapResult.result);
console.log("unwrap result: ", unwrapResult.result);
}
main();
See our troubleshooting guide for details on how to diagnose various failure scenarios.
Enabling logging may help uncover useful information about failures. In order to see a log of HTTP requests and responses, set the AZURE_LOG_LEVEL
environment variable to info
. Alternatively, logging can be enabled at runtime by calling setLogLevel
in the @azure/logger
:
const { setLogLevel } = require("@azure/logger");
setLogLevel("info");
You can find more code samples through the following links:
If you'd like to contribute to this library, please read the contributing guide to learn more about how to build and test the code.
FAQs
Isomorphic client library for Azure KeyVault's keys.
The npm package @azure/keyvault-keys receives a total of 1,529,907 weekly downloads. As such, @azure/keyvault-keys popularity was classified as popular.
We found that @azure/keyvault-keys demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 2 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Research
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Research
Security News
Attackers used a malicious npm package typosquatting a popular ESLint plugin to steal sensitive data, execute commands, and exploit developer systems.
Security News
The Ultralytics' PyPI Package was compromised four times in one weekend through GitHub Actions cache poisoning and failure to rotate previously compromised API tokens.