Security News
Weekly Downloads Now Available in npm Package Search Results
Socket's package search now displays weekly downloads for npm packages, helping developers quickly assess popularity and make more informed decisions.
@hyperjump/json-schema-core
Advanced tools
JSON Schema Core (JSC) is a framework for building JSON Schema based validators and other tools.
It includes tools for:
$id
, $schema
, $ref
, etc)JSC is designed to run in a vanilla node.js environment, but has no dependencies on node.js specific libraries so it can be bundled for the browser. No compilers, preprocessors, or bundlers are used.
npm install @hyperjump/json-schema-core
When in a browser context, JSC is designed to use the browser's fetch
implementation instead of a node.js fetch clone. The Webpack bundler does this
properly without any extra configuration, but if you are using the Rollup
bundler you will need to include the browser: true
option in your Rollup
configuration.
plugins: [
resolve({
browser: true
}),
commonjs()
]
A Schema Document (SDoc) is a structure that includes the schema, the id, and a
JSON Pointer. The "value" of an SDoc is the portion of the schema that the JSON
pointer points to. This allows an SDoc to represent any value in the schema
while maintaining enough context to follow $ref
s and track the position in the
document.
Schema.add: (schema: object, url?: URI, schemaVersion?: string) => undefined
Load a schema. See the "$id" and "$schema" sections for more details
Schema.get: (url: URI, contextDoc?: SDoc, recursive: boolean = false) => Promise
Fetch a schema. Schemas can come from an HTTP request, a file, or a schema
that was added with Schema.add
.
Schema.uri: (doc: SDoc) => URI
Returns a URI including the id and JSON Pointer that represents a value within the schema.
Schema.value: (doc: SDoc) => any
The portion of the schema the document's JSON Pointer points to.
Schema.step: (key: string, doc: SDoc) => Promise
Similar to schema[key]
, but returns an SDoc.
Schema.sibling: (key: string, doc: SDoc) => Promise
Similar to Schema.step
, but gets an adjacent key.
Schema.entries: (doc: SDoc) => [key, Promise]
Similar to Object.entries
, but returns SDocs for values.
Schema.map: (fn: (item: Promise, index: integer) => T, doc: SDoc) => [T]
A map
function for an SDoc whose value is an array.
JSC requires that all schemas are identified by at least one URI. There are two
types of schema identifiers, internal and external. An internal identifier is an
identifier that is specified within the schema using $id
. An external
identifier is an identifier that is specified outside of the schema. In JSC, an
external identifier can be either the URL a schema is retrieved with, or the
identifier specified when using Schema.add
to load a schema.
JSC can fetch schemas from the web or from the file system, but when fetching
from the file system, there are limitations for security reasons. If
your schema has an identifier with an http scheme (http://example.com), it's
not allowed to reference ($ref
) schemas with a file scheme
(file:///path/to/my/schemas).
Internal identifiers ($id
s) are resolved against the external identifier of
the schema (if one exists) and the resulting URI is used to identify the schema.
All identifiers must be absolute URIs. External identifiers are required to be
absolute URIs and internal identifiers must resolve to absolute URIs.
cosnt { JsonSchema, Schema } = require("@hyperjump/json-schema-core");
// Example: Inline schema with external identifier
const schemaJson = {
"$schema": "https://json-schema.org/draft/2019-09/schema",
"type": "string"
}
Schema.add(schemaJson, "http://example.com/schemas/string");
const schema = await Schema.get("http://example.com/schemas/string");
// Example: Inline schema with internal identifier
const schemaJson = {
"$schema": "https://json-schema.org/draft/2019-09/schema",
"$id": "http://example.com/schemas/string",
"type": "string"
}
Schema.add(schemaJson);
const schema = await Schema.get("http://example.com/schemas/string");
// Example: Inline schema with no identifier
const schemaJson = {
"$schema": "https://json-schema.org/draft/2019-09/schema",
"type": "string"
}
Schema.add(schemaJson); // Error: Couldn't determine an identifier for the schema
// Given the following schema at http://example.com/schemas/foo
// {
// "$schema": "https://json-schema.org/draft/2019-09/schema",
// "$id": "http://example.com/schemas/string",
// "type": "string"
// }
// Example: Fetch schema from external HTTP identifier
const schema = await Schema.get("http://example.com/schemas/string");
// Example: Fetch schema from internal identifier
const schema = await Schema.get("http://example.com/schemas/foo");
// Given the following schema at http://example.com/schemas/bar
// {
// "$schema": "https://json-schema.org/draft/2019-09/schema",
// "$id": "string",
// "type": "string"
// }
// Example: Fetch schema from internal identifier resolved against external identifier
const schema = await Schema.get("http://example.com/schemas/string");
// Given the following schema at /path/to/my/schemas/string.schema.json
// {
// "$schema": "https://json-schema.org/draft/2019-09/schema",
// "type": "string"
// }
// Example: Fetch schema from external FILE identifier
const schema = await Schema.get("file:///path/to/my/schemas/string.schema.json");
// Given the following schema at /path/to/my/schemas/string.schema.json
// {
// "$schema": "https://json-schema.org/draft/2019-09/schema",
// "type": "string"
// }
//
// Given the following schema at http://example.com/schemas/baz
// {
// "$schema": "https://json-schema.org/draft/2019-09/schema",
// "$ref": "file:///path/to/my/schemas/string.schema.json"
// }
// Example: Reference file from network context
const schema = await Schema.get("http://example.com/schemas/baz");
const validateString = await JsonSchema.validate(schema); // Error: Can't access file resource from network context
JSC is designed to support multiple drafts of JSON Schema and it makes no
assumption about what draft your schema uses. You need to specify it in some
way. The preferred way is to the use $schema
in all of your schemas, but you
can also specify what draft to use when adding a schema using Schema.add
. If a
draft is specified in Schema.add
and the schema has a $schema
, the
$schema
will be used. If no draft is specified, you will get an error.
// Example: Internal schema version
const schemaJSON = {
"$schema": "https://json-schema.org/draft/2019-09/schema",
"$id": "http://example.com/schemas/string",
"type": "string"
};
Schema.add(schemaJSON);
// Example: External schema version
const schemaJSON = {
"type": "string"
};
Schema.add(schemaJSON, "http://example.com/schemas/string", "https://json-schema.org/draft/2019-09/schema");
// Example: No schema version
const schemaJSON = {
"$id": "http://example.com/schemas/string",
"type": "string"
};
Schema.add(schemaJSON); // Error: Couldn't determine schema version
// Given the following schema at http://example.com/schemas/foo
// {
// "type": "string"
// }
// Example: No schema version external
const schema = Schema.get("http://example.com/schemas/string"); // Error: Couldn't determine schema version
A JSON Document (JDoc) is like a Schema Document (SDoc) except with much more limited functionality.
Json.cons: (json: any) => JDoc
Construct a JDoc from a value.
Json.get: (url: URI, contextDoc: JDoc) => JDoc
Apply a same-resource reference to a JDoc.
Json.uri: (doc: JDoc) => URI
Returns a URI including the id and JSON Pointer that represents a value within the instance.
Json.value: (doc: JDoc) => any
The portion of the instance that the document's JSON Pointer points to.
Json.step: (key: string, doc: JDoc) => JDoc
Similar to schema[key]
, but returns a JDoc.
Json.entries: (doc: JDoc) => [key, JDoc]
Similar to Object.entries
, but returns JDocs for values.
Json.map: (fn: (item: JDoc, index: integer) => T, doc: JDoc) => [T]
A map
function for a JDoc whose value is an array.
Json.reduce: (fn: (accumulator: T, item: JDoc, index: integer) => T, initial: T, doc: JDoc) => T
A reduce
function for a JDoc whose value is an array.
Json.every: (fn: (doc: JDoc, index: integer) => boolean, doc: JDoc) => boolean
An every
function for a JDoc whose value is an array.
Json.some: (fn: (doc: JDoc, index: integer) => boolean, doc: JDoc) => boolean
A some
function for a JDoc whose value is an array.
JSC supports all of the standard output formats specified for JSON Schema draft-2019-09 and is separately configurable for instance validation and meta-validtion.
This implementation does not include the suggested keywordLocation
property in
the output unit. I think absoluteKeywordLocation
+instanceLocation
is
sufficient for debugging and it's awkward for the output to produce JSON
Pointers that potentially won't resolve because they cross schema boundaries.
This implementation includes an extra property in the output unit called
keyword
. This is an identifier (URI) for the keyword that was validated. With
the standard output unit fields, we can see what keyword was validated by
inspecting the last segment of the absoluteKeywordLocation
property. But,
since JSC can support multiple JSON Schema versions, we would have to pull up
the actual schema to find what draft was used. The schema
property gives us
enough information to not have to go back to the schema to know what draft is
being used.
const { JsonSchema, Schema } = require("@hyperjump/json-schema-core");
// Example: Specify instance validation output format
Schema.add({
"$schema": "https://json-schema.org/draft/2019-09/schema",
"$id": "http://example.com/schemas/string",
"type": "string"
});
const schema = await Schema.get("http://example.com/schemas/string");
const isString = await JsonSchema.validate(schema);
const output = isString(42, JsonSchema.BASIC); // => {
// "keyword": "https://json-schema.org/draft/2019-09/schema",
// "absoluteKeywordLocation": "http://example.com/schemas/string#",
// "instanceLocation": "#",
// "valid": false,
// "errors": [
// {
// "keyword": "https://json-schema.org/draft/2019-09/schema#type",
// "absoluteKeywordLocation": "http://example.com/schemas/string#/type",
// "instanceLocation": "#",
// "valid": false
// }
// ]
// }
// Example: Specify meta-validation output format
Schema.add({
"$schema": "https://json-schema.org/draft/2019-09/schema",
"$id": "http://example.com/schemas/foo",
"type": "this-is-not-a-valid-type"
});
JsonSchema.setMetaOutputFormat(JsonSchema.BASIC);
const schema = await Schema.get("http://example.com/schemas/foo");
const isString = await JsonSchema.validate(schema); // Error: {
// "keyword": "https://json-schema.org/draft/2019-09/schema",
// "absoluteKeywordLocation": "https://json-schema.org/draft/2019-09/schema#",
// "instanceLocation": "#",
// "valid": false,
// "errors": [
// {
// "keyword": "https://json-schema.org/draft/2019-09/schema#allOf",
// "absoluteKeywordLocation": "https://json-schema.org/draft/2019-09/schema#/allOf",
// "instanceLocation": "#",
// "valid": false
// }
// ...
// ]
// }
JSC uses a micro-kernel architecture, so it's highly customizable. Everything is a plugin, even the validation logic is a plugin. So, in theory, you can use JSC as a framework for building other types of JSON Schema based tools such as code generators or form generators.
In addition to this documentation you should be able to look at the code to see an example of how to add your custom plugins because it's all implemented the same way.
Let's say you want to use a custom meta-schema that does stricter validation than the standard meta-schema. Once you have your custom meta-schema ready, it's just a couple lines of code to start using it.
const { JsonSchema } = require("@hyperjump/json-schema-core");
// Optional: Load your meta-schema. If you don't do this, JSC will fetch it
// using it's identifier when it's needed.
const myCustomMetaSchema = require("./my-custom-meta-schema.schema.json");
Schema.add(myCustomMetaSchema);
// Choose a unique URI for your meta-schema
// We want validation to function exactly the same way, so we can use the
// standard `validate` keyword.
const validate = require("jschema/lib/keywords/validate");
JsonSchema.addkeyword("http://example.com/draft/2019-09-strict/schema#validate", validate);
// Use the URI you chose for your meta-schema for the `$schema` in you schemas.
Schema.add({
"$schema": "http://example.com/draft/2019-09-strict/schema",
"$id": "http://example.com/schemas/string",
"type": "string"
});
const schema = await Schema.get("http://example.com/schemas/string");
await JsonSchema.validate(schema, "foo");
Creating a new keyword takes three steps
A keyword implementation is a module with two functions: compile
and
interpret
. In the compile
step, you can do any processing steps necessary to
do the actual validation in the interpret
step. The most common thing to do in
the compile
step is to compile sub-schemas. The interpret
step takes the
result of the compile
step and returns a boolean value indicating whether
validation has passed or failed. Use the JSON Schema keyword implementations in
this package as examples to get started.
When you have your new keyword implementation, you'll need a custom meta-schema to validate that the new keyword is used correctly.
// This example implements an `if`/`then`/`else`-like keyword called `cond`.
// `cond` is an array of schemas where the first is the `if` schema, the second
// is the `then` schema, and the third is the `else` schema.
const { JsonSchema, Schema, Keywords } = require("@hyperjump/json-schema-core");
const cond = {
compile: async (schema, ast) => {
const subSchemas = Schema.map((subSchema) => JsonSchema.compileSchema(subSchema, ast), schema);
return Promise.all(subSchemas);
},
interpret: (cond, json, ast) => {
return JsonSchema.interpretSchema(cond[0], json, ast)
? (cond[1] ? Core.interpretSchema(cond[1], json, ast) : true)
: (cond[2] ? Core.interpretSchema(cond[2], json, ast) : true);
}
};
JsonSchema.addkeyword("http://example.com/draft/custom/schema#validate", Keywords.validate);
JsonSchema.addkeyword("http://example.com/draft/custom/schema#cond", cond);
Schema.add({
"$schema": "http://example.com/draft/custom/schema",
"$id": "http://example.com/schemas/cond",
"type": "integer",
"cond": [
{ "minimum": 10 },
{ "multipleOf": 3 },
{ "multipleOf": 2 }
]
});
const schema = await Schema.get("http://example.com/schemas/cond");
await Schema.validate(schema, 42);
You can create vocabularies with JSC as well. A vocabulary is just a named collection of keywords. Creating a vocabulary takes three steps:
const { JsonSchema, Schema } = require("@hyperjump/json-schema-core");
const cond = require("./keywords/cond.js");
JsonSchema.addVocabulary("https://example.com/draft/custom/vocab/conditionals", {
cond: cond
});
Schema.add({
"$schema": "http://example.com/draft/custom/schema",
"$id": "http://example.com/schemas/cond",
"type": "integer",
"cond": [
{ "minimum": 10 },
{ "multipleOf": 3 },
{ "multipleOf": 2 }
]
});
const schema = await Schema.get("http://example.com/schemas/cond");
await JsonSchema.validate(schema, 42);
Run the tests
npm test
Run the tests with a continuous test runner
npm test -- --watch
FAQs
A framework for building JSON Schema tools
The npm package @hyperjump/json-schema-core receives a total of 38,162 weekly downloads. As such, @hyperjump/json-schema-core popularity was classified as popular.
We found that @hyperjump/json-schema-core demonstrated a not healthy version release cadence and project activity because the last version was released a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Socket's package search now displays weekly downloads for npm packages, helping developers quickly assess popularity and make more informed decisions.
Security News
A Stanford study reveals 9.5% of engineers contribute almost nothing, costing tech $90B annually, with remote work fueling the rise of "ghost engineers."
Research
Security News
Socket’s threat research team has detected six malicious npm packages typosquatting popular libraries to insert SSH backdoors.