Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

@jupyterlab/vega5-extension

Package Overview
Dependencies
Maintainers
0
Versions
311
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

@jupyterlab/vega5-extension

JupyterLab - Vega 5 and Vega-Lite 5 Mime Renderer Extension

  • 4.3.3
  • latest
  • Source
  • npm
  • Socket score

Version published
Maintainers
0
Created
Source

vega5-extension

A JupyterLab extension for rendering Vega 5 and Vega-Lite 3.

This extension is in the official JupyterLab distribution.

Usage

To render Vega-Lite output in IPython:

from IPython.display import display

display({
    "application/vnd.vegalite.v3+json": {
        "$schema": "https://vega.github.io/schema/vega-lite/v3.json",
        "description": "A simple bar chart with embedded data.",
        "data": {
            "values": [
                {"a": "A", "b": 28}, {"a": "B", "b": 55}, {"a": "C", "b": 43},
                {"a": "D", "b": 91}, {"a": "E", "b": 81}, {"a": "F", "b": 53},
                {"a": "G", "b": 19}, {"a": "H", "b": 87}, {"a": "I", "b": 52}
            ]
        },
        "mark": "bar",
        "encoding": {
            "x": {"field": "a", "type": "ordinal"},
            "y": {"field": "b", "type": "quantitative"}
        }
    }
}, raw=True)

Using the Altair library:

import altair as alt

cars = alt.load_dataset('cars')

chart = alt.Chart(cars).mark_point().encode(
    x='Horsepower',
    y='Miles_per_Gallon',
    color='Origin',
)

chart

Provide Vega-Embed options via metadata:

from IPython.display import display

display({
    "application/vnd.vegalite.v3+json": {
        "$schema": "https://vega.github.io/schema/vega-lite/v3.json",
        "description": "A simple bar chart with embedded data.",
        "data": {
            "values": [
                {"a": "A", "b": 28}, {"a": "B", "b": 55}, {"a": "C", "b": 43},
                {"a": "D", "b": 91}, {"a": "E", "b": 81}, {"a": "F", "b": 53},
                {"a": "G", "b": 19}, {"a": "H", "b": 87}, {"a": "I", "b": 52}
            ]
        },
        "mark": "bar",
        "encoding": {
            "x": {"field": "a", "type": "ordinal"},
            "y": {"field": "b", "type": "quantitative"}
        }
    }
}, metadata={
    "application/vnd.vegalite.v3+json": {
        "embed_options": {
            "actions": False
        }
    }
}, raw=True)

Provide Vega-Embed options via Altair:

import altair as alt

alt.renderers.enable('default', embed_options={'actions': False})

cars = alt.load_dataset('cars')

chart = alt.Chart(cars).mark_point().encode(
    x='Horsepower',
    y='Miles_per_Gallon',
    color='Origin',
)

chart

To render a .vl, .vg, vl.json or .vg.json file, simply open it:

Development

See the JupyterLab Contributor Documentation.

FAQs

Package last updated on 10 Dec 2024

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc