Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

@markprompt/react

Package Overview
Dependencies
Maintainers
1
Versions
145
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

@markprompt/react

A headless React component for adding GPT-4 powered search using the Markprompt API.

  • 0.10.6
  • Source
  • npm
  • Socket score

Version published
Weekly downloads
979
increased by42.92%
Maintainers
1
Weekly downloads
 
Created
Source

Markprompt React

Markprompt's @markprompt/react library offers you both a simple, accessible, prebuilt React component that you can include in your codebase, as well as a set of React primitives that you can use to build your own custom Markprompt UI.

The <Markprompt /> component is built with Radix' Dialog component and allows for limited control over the Markprompt UI, mostly offering you the ability to change texts as well as how prompt references and search results are linked to your website.

The Markprompt.* primitives offer you a fully customizable way to build your own UI and have full control.

In combination with @markprompt/css, the <Markprompt /> component is a drop-in solution for most websites. You can also opt to provide your own styles, or override ours to your liking.


Installation

Install the @markprompt/react package via npm, yarn or pnpm:

# npm
npm install @markprompt/react

# yarn
yarn add @markprompt/react

# pnpm
pnpm add @markprompt/react

Usage

Example:

import `@markprompt/css`;
import { Markprompt } from '@markprompt/react';

export function Component() {
  return <Markprompt projectKey="YOUR-PROJECT-KEY" />;
}

replacing YOUR-PROJECT-KEY with the key associated to your project. It can be obtained in the project settings on Markprompt.com under "Project key".

API

<Markprompt />

The pre-built Markprompt component. It accepts the following props:

  • projectKey (string): The project key associated to your project. It can be obtained in the project settings on Markprompt.com under "Project key".
  • close (object): Options for the close modal button
  • close.label (string): aria-label for the close modal button (Default: Close Markprompt)
  • description (object): Options for the description
  • description.hide (boolean): Visually hide the description (Default: true)
  • description.text (string): Description text
  • prompt (object): Options for the prompt
  • prompt.label (string): Label for the prompt input (Default: Ask me anything…)
  • prompt.placeholder (string): Placeholder for the prompt input (Default: Ask me anything…)
  • prompt.cta (string): When search is enabled, this label is used for the CTA button that opens the prompt (Default: Ask Docs AI…)
  • prompt.completionsUrl (string): URL at which to fetch completions. (Default: https://api.markprompt.com/v1/completions)
  • prompt.iDontKnowMessage (string): Message returned when the model does not have an answer. (Default: Sorry, I am not sure how to answer that.)
  • prompt.model (string): The OpenAI model to use. (Default: gpt-3.5-turbo)
  • prompt.promptTemplate (string): The prompt template. (Default: You are a very enthusiastic company representative who loves to help people! Given the following sections from the documentation (preceded by a section id), answer the question using only that information, outputted in Markdown format. If you are unsure and the answer is not explicitly written in the documentation, you can say 'I don't know' and the question will be passed to the OpenAI model to answer.\n\n# Sections\n\n{{#each sections}}\n## {{this.id}}\n\n{{this.content}}\n\n{{/each}}\n\n# Question\n\n{{question}}\n\n# Answer\n\n)
  • prompt.temperature (number): The model temperature. (Default: 0.1)
  • prompt.topP (number): The model top P. (Default: 1)
  • prompt.frequencyPenalty (number): The model frequency penalty. (Default: 0)
  • prompt.presencePenalty (number): The model presence penalty. (Default: 0)
  • prompt.maxTokens (number): The max number of tokens to include in the response. (Default: 500)
  • prompt.sectionsMatchCount (number): The number of sections to include in the prompt context. (Default: 10)
  • prompt.sectionsMatchThreshold (number): The similarity threshold between the input question and selected sections. (Default: 0.5)
  • prompt.signal (AbortSignal): AbortController signal.
  • references (object): Options for the references
  • references.transformReferenceId (function): Callback to transform a reference id into an href and text
  • references.loadingText (string): Loading text (Default: Fetching relevant pages…)
  • references.referencesText (string): References title (Default: Answer generated from the following sources:)
  • search (object): Options for search
  • search.enable (boolean): Enable search (Default: false)
  • search.getResultHref (function): Callback to transform a search result into an href
  • search.enable (boolean): Whether or not to enable search. (Default: true)
  • search.limit (number): Maximum amount of results to return. (Default: 5)
  • search.searchUrl (string): URL at which to fetch search results. (Default: https://api.markprompt.com/v1/search)
  • search.signal (AbortSignal): AbortController signal.
  • trigger (object): Options for the trigger
  • trigger.customElement (boolean): Use a custom element as the trigger. Will disable rendering any trigger element. Use openMarkprompt() to trigger the Markprompt dialog. (Default: false)
  • trigger.label (string): aria-label for the open button (Default: Open Markprompt)
  • trigger.placeholder (string): Placeholder text for non-floating element (Default: Ask docs)
  • title (object): Options for the title
  • title.hide (boolean): Visually hide the title (Default: true)
  • title.text (string): Title text (Default: Ask me anything)
  • showBranding (boolean): Show Markprompt branding (Default: true)

When rendering the Markprompt component, it will render a search input-like button by default. You have two other options:

  • set trigger.floating = true to render a floating button
  • set trigger.customElement = true, then import { openMarkprompt } from '@markprompt/react' and call openMarkprompt() from your code. This gives you the flexibility to render your own trigger element and attach whatever event handlers you would like and/or open the Markprompt dialog programmatically.

openMarkprompt()

A function to open the Markprompt dialog programmatically. Takes no arguments.

<Answer />

Render the markdown answer from the Markprompt API. It accepts the same props as react-markdown, except children.

<AutoScroller />

A component automatically that scrolls to the bottom. It accepts the following props:

  • autoScroll (boolean): Whether or not to enable automatic scrolling. (Default: true)
  • scrollBehaviour (string): The behaviour to use for scrolling. (Default: smooth)

All other props will be passed to the underlying <div> element.

<Close />

A button to close the Markprompt dialog and abort an ongoing request. It accepts the same props as Radix UI Dialog.Close.

<Content />

The Markprompt dialog content. It accepts the same props as Radix UI Dialog.Content, with the following additional prop:

  • showBranding (boolean): Show the Markprompt footer.

<Description />

A visually hidden aria description. It accepts the same props as Radix UI Dialog.Description, with the following additional prop:

  • hide (boolean): Hide the description.

<Form />

A form which, when submitted, submits the current prompt. It accepts the same props as <form>.

<Overlay />

The Markprompt dialog overlay. It accepts the same props as Radix UI Dialog.Overlay.

<Portal />

The Markprompt dialog portal. It accepts the same props as Radix UI Dialog.Portal.

<Prompt />

The Markprompt input prompt. User input will update the prompt in the Markprompt context. It accepts the following props:

  • label (ReactNode): The label for the input.
  • labelClassName (string): The class name of the label element.

<References />

Render the references that Markprompt returns. It accepts the following props:

  • RootComponent (Component): The wrapper component to render. (Default: 'ul')
  • ReferenceComponent (Component): The component to render for each reference. (Default: 'li')

<Root />

The Markprompt context provider and dialog root. It accepts the Radix UI Dialog.Root props and the useMarkpromptoptions as props.

<Title />

A visually hidden aria title. It accepts the same props as Radix UI Dialog.Title, with the following additional prop:

  • hide (boolean): Hide the title.

<Trigger />

A button to open the Markprompt dialog. It accepts the same props as Radix UI Dialog.Trigger.

useMarkprompt(options)

Create an interactive stateful Markprompt prompt and search experience, it takes the following options:

  • projectKey (string): The project key for the Markprompt project.
  • isSearchActive (boolean): Whether or not search is currently active. (Default: false)
  • promptOptions (object): Options for the prompt.
  • promptOptions.completionsUrl (string): URL at which to fetch completions. (Default: https://api.markprompt.com/v1/completions)
  • promptOptions.iDontKnowMessage (string): Message returned when the model does not have an answer. (Default: Sorry, I am not sure how to answer that.)
  • promptOptions.model (string): The OpenAI model to use. (Default: gpt-3.5-turbo)
  • promptOptions.promptTemplate (string): The prompt template. (Default: You are a very enthusiastic company representative who loves to help people! Given the following sections from the documentation (preceded by a section id), answer the question using only that information, outputted in Markdown format. If you are unsure and the answer is not explicitly written in the documentation, you can say 'I don't know' and the question will be passed to the OpenAI model to answer.\n\n# Sections\n\n{{#each sections}}\n## {{this.id}}\n\n{{this.content}}\n\n{{/each}}\n\n# Question\n\n{{question}}\n\n# Answer\n\n)
  • promptOptions.temperature (number): The model temperature. (Default: 0.1)
  • promptOptions.topP (number): The model top P. (Default: 1)
  • promptOptions.frequencyPenalty (number): The model frequency penalty. (Default: 0)
  • promptOptions.presencePenalty (number): The model presence penalty. (Default: 0)
  • promptOptions.maxTokens (number): The max number of tokens to include in the response. (Default: 500)
  • promptOptions.sectionsMatchCount (number): The number of sections to include in the prompt context. (Default: 10)
  • promptOptions.sectionsMatchThreshold (number): The similarity threshold between the input question and selected sections. (Default: 0.5)
  • promptOptions.signal (AbortSignal): AbortController signal.
  • searchOptions (object): Options for search.
  • searchOptions.enable (boolean): Whether or not to enable search. (Default: true)
  • searchOptions.limit (number): Maximum amount of results to return. (Default: 5)
  • searchOptions.searchUrl (string): URL at which to fetch search results. (Default: https://api.markprompt.com/v1/search)
  • searchOptions.signal (AbortSignal): AbortController signal.

Documentation

The full documentation for the component can be found on the Markprompt docs.

Starter Template

For a working setup based on Next.js + Tailwind, check out the Markprompt starter template.

Community

Authors

This library is created by the team behind Markprompt (@markprompt).

License

MIT © Motif

FAQs

Package last updated on 29 Jun 2023

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc