TypeScript ORM for Node.js based on Data Mapper, Unit of Work
and Identity Map patterns. Supports MongoDB, MySQL,
MariaDB, PostgreSQL and SQLite databases.
Heavily inspired by Doctrine and Nextras Orm.
🤔 Unit of What?
You might be asking: What the hell is Unit of Work and why should I care about it?
Unit of Work maintains a list of objects (entities) affected by a business transaction
and coordinates the writing out of changes. (Martin Fowler)
Identity Map ensures that each object (entity) gets loaded only once by keeping every
loaded object in a map. Looks up objects using the map when referring to them.
(Martin Fowler)
So what benefits does it bring to us?
Implicit Transactions
First and most important implication of having Unit of Work is that it allows handling
transactions automatically.
When you call em.flush()
, all computed changes are queried inside a database
transaction (if supported by given driver). This means that you can control the boundaries
of transactions simply by calling em.persistLater()
and once all your changes
are ready, calling flush()
will run them inside a transaction.
You can also control the transaction boundaries manually via em.transactional(cb)
.
const user = await em.findOneOrFail(User, 1);
user.email = 'foo@bar.com';
const car = new Car();
user.cars.add(car);
await em.flush();
ChangeSet based persistence
MikroORM allows you to implement your domain/business logic directly in the entities.
To maintain always valid entities, you can use constructors to mark required properties.
Let's define the User
entity used in previous example:
@Entity()
export class User {
@PrimaryKey()
id!: number;
@Property()
name!: string;
@OneToOne()
address?: Address;
@ManyToMany()
cars = new Collection<Car>(this);
constructor(name: string) {
this.name = name;
}
}
Now to create new instance of the User
entity, we are forced to provide the name
:
const user = new User('John Doe');
user.address = new Address('10 Downing Street');
Once your entities are loaded, make a number of synchronous actions on your entities,
then call em.flush()
. This will trigger computing of change sets. Only entities
(and properties) that were changed will generate database queries, if there are no changes,
no transaction will be started.
const user = await em.findOneOrFail(User, 1, ['cars', 'address']);
user.title = 'Mr.';
user.address.street = '10 Downing Street';
user.cars.getItems().forEach(car => car.forSale = true);
const car = new Car('VW');
user.cars.add(car);
await em.flush();
em.flush()
will then execute these queries from the example above:
begin;
update user set title = 'Mr.' where id = 1;
update user_address set street = '10 Downing Street' where id = 123;
update car set for_sale = true where id = 1;
update car set for_sale = true where id = 2;
update car set for_sale = true where id = 3;
insert into car (brand, owner) values ('VW', 1);
commit;
Only One Instance of Entity
Thanks to Identity Map, you will always have only one instance of given entity in one context.
This allows for some optimizations (skipping loading of already loaded entities), as well as
comparison by identity (ent1 === ent2
).
📖 Documentation
MikroORM v3 documentation, included in this repo in the root directory, is built with
Jekyll and publicly hosted on GitHub Pages at https://mikro-orm.io.
There is also auto-generated CHANGELOG.md file based on commit messages
(via semantic-release
).
You can browse MikroORM v2 docs at https://mikro-orm.io/docs/2.7/installation.
To upgrade to v3, please see the upgrading guide.
✨ Core Features
📦 Example Integrations
You can find example integrations for some popular frameworks in the mikro-orm-examples
repository:
TypeScript Examples
JavaScript Examples
Articles
- Introducing MikroORM, TypeScript data-mapper ORM with Identity Map
- Handling transactions and concurrency in MikroORM
- MikroORM 3: Knex.js, CLI, Schema Updates, Entity Generator and more…
🚀 Quick Start
First install the module via yarn
or npm
and do not forget to install the database driver as well:
$ yarn add mikro-orm mongodb # for mongo
$ yarn add mikro-orm mysql2 # for mysql/mariadb
$ yarn add mikro-orm mariadb # for mysql/mariadb
$ yarn add mikro-orm pg # for postgresql
$ yarn add mikro-orm sqlite3 # for sqlite
or
$ npm i -s mikro-orm mongodb # for mongo
$ npm i -s mikro-orm mysql2 # for mysql/mariadb
$ npm i -s mikro-orm mariadb # for mysql/mariadb
$ npm i -s mikro-orm pg # for postgresql
$ npm i -s mikro-orm sqlite3 # for sqlite
Next you will need to enable support for decorators
as well as esModuleInterop
in tsconfig.json
via:
"experimentalDecorators": true,
"emitDecoratorMetadata": true,
"esModuleInterop": true
Then call MikroORM.init
as part of bootstrapping your app:
const orm = await MikroORM.init({
entitiesDirs: ['./dist/entities'],
dbName: 'my-db-name',
type: 'mongo',
clientUrl: '...',
});
console.log(orm.em);
There are more ways to configure your entities, take a look at
installation page.
Read more about all the possible configuration options in Advanced Configuration section.
Then you will need to fork entity manager for each request so their
identity maps will not collide.
To do so, use the RequestContext
helper:
const app = express();
app.use((req, res, next) => {
RequestContext.create(orm.em, next);
});
You should register this middleware as the last one just before request handlers and before
any of your custom middleware that is using the ORM. There might be issues when you register
it before request processing middleware like queryParser
or bodyParser
, so definitely
register the context after them.
More info about RequestContext
is described here.
Now you can start defining your entities (in one of the entitiesDirs
folders). This is how
simple entity can look like in mongo driver:
./entities/MongoBook.ts
@Entity()
export class MongoBook {
@PrimaryKey()
_id: ObjectID;
@SerializedPrimaryKey()
id: string;
@Property()
title: string;
@ManyToOne()
author: Author;
@ManyToMany()
tags = new Collection<BookTag>(this);
constructor(title: string, author: Author) {
this.title = title;
this.author = author;
}
}
For SQL drivers, you can use id: number
PK:
./entities/SqlBook.ts
@Entity()
export class SqlBook {
@PrimaryKey()
id: number;
}
Or if you want to use UUID primary keys:
./entities/UuidBook.ts
import { v4 } from 'uuid';
@Entity()
export class UuidBook {
@PrimaryKey()
uuid = v4();
}
More information can be found in
defining entities section in docs.
When you have your entities defined, you can start using ORM either via EntityManager
or via EntityRepository
s.
To save entity state to database, you need to persist it. Persist takes care or deciding
whether to use insert
or update
and computes appropriate change-set. Entity references
that are not persisted yet (does not have identifier) will be cascade persisted automatically.
const author = new Author('Jon Snow', 'snow@wall.st');
author.born = new Date();
const publisher = new Publisher('7K publisher');
const book1 = new Book('My Life on The Wall, part 1', author);
book1.publisher = publisher;
const book2 = new Book('My Life on The Wall, part 2', author);
book2.publisher = publisher;
const book3 = new Book('My Life on The Wall, part 3', author);
book3.publisher = publisher;
await orm.em.persistAndFlush([book1, book2, book3]);
To fetch entities from database you can use find()
and findOne()
of EntityManager
:
const authors = orm.em.find(Author, {});
for (const author of authors) {
console.log(author);
console.log(author.name);
for (const book of author.books) {
console.log(book);
console.log(book.title);
}
}
More convenient way of fetching entities from database is by using EntityRepository
, that
carries the entity name so you do not have to pass it to every find
and findOne
calls:
const booksRepository = orm.em.getRepository(Book);
const books = await booksRepository.find({ author: '...' }, ['author'], { title: QueryOrder.DESC }, 2, 1);
const books = await booksRepository.find({ author: '...' }, {
populate: ['author'],
limit: 1,
offset: 2,
sort: { title: QueryOrder.DESC },
});
console.log(books);
Take a look at docs about working with EntityManager
or using EntityRepository
instead.
🤝 Contributing
Contributions, issues and feature requests are welcome. Please read
CONTRIBUTING.md
for details on the process for submitting pull requests to us.
Authors
👤 Martin Adámek
See also the list of contributors who participated in this project.
Show Your Support
Please ⭐️ this repository if this project helped you!
📝 License
Copyright © 2018 Martin Adámek.
This project is licensed under the MIT License - see the LICENSE file for details.