Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

@singlestore/elegance-sdk

Package Overview
Dependencies
Maintainers
3
Versions
20
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

@singlestore/elegance-sdk

The Elegance SDK is an SDK for quickly building real-time AI full-stack JavaScript applications using SingleStoreDB with support for MySQL and Kai (support for Mongo APIs) connection types and the OpenAI API. It provides a set of ready-made tools for impl

  • 0.0.7
  • Source
  • npm
  • Socket score

Version published
Weekly downloads
7
decreased by-85.11%
Maintainers
3
Weekly downloads
 
Created
Source

SingleStore Elegance SDK

The Elegance SDK is an SDK for quickly building real-time AI full-stack JavaScript applications using SingleStoreDB with support for MySQL and Kai (support for Mongo APIs) connection types and the OpenAI API. It provides a set of ready-made tools for implementing various types of functionality when you need to transact, analyze, and contextualize data in real-time or build real-time AI apps.

Features

  • Vector search
  • Chat completions
  • File embeddings generation (csv, pdf)
  • SQL and aggregate queries
  • SQL and Kai (MongoDB) database connections support
  • Ready-to-use Node.js controllers and React.js hooks

Installation

npm install @singlestore/elegance-sdk

Usage

This guide will show you how to use the SDK in Express.js and React.js.

  1. Create a eleganceServerClient.ts file
  2. Import the createEleganceServerClient function from @singlestore/elegance-sdk/server
// ./server/services/eleganceServerClient.ts
import { createEleganceServerClient } from "@singlestore/elegance-sdk/server";

export const eleganceServerClient = createEleganceServerClient("mysql", {
  connection: {
    host: process.env.DB_HOST,
    user: process.env.DB_USER,
    password: process.env.DB_PASSWORD,
    database: process.env.DB_NAME
  },
  openai: {
    apiKey: process.env.OPENAI_API_KEY
  }
});
  1. Create a route handler for elegance/:route (using Express.js as an example).
// ./server/routes/elegance.ts
import express from "express";
import type { Routes } from "@singlestore/elegance-sdk/server";
import { eleganceServerClient } from "@/services/eleganceServerClient";

export const eleganceRouter = express.Router();

eleganceRouter.post("/elegance/:route", async (req, res) => {
  try {
    const route = req.params.route as Routes;
    const result = await eleganceServerClient.handleRoute(route, req.body);
    return res.status(200).json(result);
  } catch (error: any) {
    return res.status(error.status).json(error);
  }
});
  1. Import the eleganceRouter into the ./server/index.ts
// ./server/index.ts
import express from "express";
import { eleganceRouter } from "./routes/elegance";

const app = express();

app.use(eleganceRouter);

app.listen(4000, () => {
  console.log(`Server started on port: ${4000}`);
});
  1. Run your server
  2. Create a eleganceClient.ts file
  3. Import the createEleganceClient function from @singlestore/elegance-sdk
// ./client/services/eleganceClient.ts
import { createEleganceClient } from "@singlestore/elegance-sdk";

export const eleganceClient = createEleganceClient("mysql", {
  baseURL: "http://localhost:4000"
});
  1. Import the eleganceClient to your component
// ./client/components/ExampleComponent.tsx
import { useEffect } from "react";
import { eleganceClient } from "@/services/eleganceClient";

export function ExampleComponent() {
  const query = eleganceClient.hooks.useQuery<{ name: string }[]>({ initialValue: [], initialIsLoading: true });
  const { execute: executeQuery } = query;

  useEffect(() => {
    executeQuery({ query: "SELECT name FROM table LIMIT 3" });
  }, [executeQuery]);

  if (query.isLoading) return "Loading...";

  return (
    <div>
      {query.value.map(item => (
        <h4 key={item.name}>{item.name}</h4>
      ))}
    </div>
  );
}
  1. Run your client

Templates

You can find templates using the Elegance SDK here:

  • Next.js Template
  • Express.js Template

Example apps

You can find example apps using the Elegance SDK here:

API

createEleganceServerClient

Creates an EleganceServerClient instance for a server.

Parameters:

  • connectionType: "kai" | "mysql"
  • config: {
      connection: KaiConnectionConfig | MySQLConnectionConfig;
      openai: OpenAIConfig;
    }
    

Returns: eleganceServerClient

eleganceServerClient

Server client that includes a database connection, controllers and OpenAI client. It's used on the server to handle requests from the client and execute logic.

eleganceServerClient.connection

MySQL or MongoDB connection to interact with a database

eleganceServerClient.handleRoute

Accepts a route and executes the controller for that route.

Parameters:

  • route: string - controller route name
  • body: object - controller body
eleganceServerClient.controllers.insertOne.execute<T>

Inserts one record.

Parameters:

body: {
    collection: string; // Collection name
    generateId?: boolean; // Generates the `id` string field
    value: MongoOptionalUnlessRequiredId<T>; // Value to insert
    options?: MongoInsertOneOptions;
  } | {
    db?: string; // Database name
    table: string; // Table name
    generateId?: boolean;
    value: T;
  }

Returns: T

eleganceServerClient.controllers.insertMany.execute<Array<T>>

Inserts many records.

Parameters:

body: {
    collection: string; // Collection name
    values: Array<MongoOptionalUnlessRequiredId<T[number]>>; // Values to insert
    generateId?: boolean; // Generates the `id` string field
    options?: MongoBulkWriteOptions;
  } | {
    db?: string; // Database name
    table: string; // Table name
    generateId?: boolean;
    values: Array<T>;
  }

Returns: Array<T>

eleganceServerClient.controllers.updateMany.execute<Array<T>>

Updates many records.

Parameters:

body: {
    collection: string; // Collection name
    filter: MongoFilter<T[number]>; // Filter to find records to update
    update: MongoUpdateFilter<T[number]>;
    options?: MongoUpdateOptions;
    updatedFilter?: MongoFilter<T[number]>; // Filter to find updated records
  } | {
    db?: string; // Database name
    table: string; // Table name
    where: MySQLWhere; // MySQL WHERE string value to find records to update
    set: MySQLSet; // MySQL SET string value
    updatedWhere: MySQLWhere; // MySQL WHERE string value to find updated records
  }

Returns: Array<T>

eleganceServerClient.controllers.deleteMany.execute<T>

Deletes many records.

Parameters:

body: {
    collection: string; // Collection name
    filter: MongoFilter<T>; // Filter to find records to delete
    options?: MongoDeleteOptions;
  } | {
    db?: string; // Database name
    table: string; // Table name
    where: MySQLWhere; // MySQL WHERE string value to find records to delete
  }

Returns: { message: string }

eleganceServerClient.controllers.findOne.execute<T>

Gets one record.

Parameters:

body: {
    collection: string; // Collection name
    filter?: MongoFilter<T>; // Filter to find a record
    options?: MongoFindOptions;
  } | {
    db?: string; // Database name
    table: string; // Table name
    columns?: string[]; // Columns to get by default *
    where?: MySQLWhere; // MySQL WHERE string value to find a record
  }

Returns: T

eleganceServerClient.controllers.findMany.execute<Array<T>>

Gets many records.

Parameters:

body: {
    collection: string; // Collection name
    filter?: MongoFilter<T[number]>; // Filter to find records
    options?: MongoFindOptions;
  } | {
    db?: string; // Database name
    table: string; // Table name
    columns?: string[]; // Columns to get by default *
    where?: MySQLWhere; // MySQL WHERE string value to find records
    skip?: number;
    limit?: number;
  }

Returns: Array<object>

eleganceServerClient.controllers.query.execute<Array<T>>

Executes MySQL or aggregate query.

Parameters:

body: {
    collection: string; // Collection name
    pipeline: object[]; // Aggregate pipeline
    options?: MongoAggregateOptions;
  } | {
    query: string; // MySQL query
  }

Returns: Array<T>

eleganceServerClient.controllers.createEmbedding.execute

Creates embedding.

Parameters:

body: {
  input: string | string[] | object | object[];
}

Returns: Array<number>

eleganceServerClient.controllers.vectorSearch.execute

Performs vector search in the collection based on the query.

Parameters:

body: {
    collection: string; // Collection name
    embeddingField: string; // Field name with the embedding by which to perform the search
    query: string; // Search query
    limit?: number; // Number of records to get
  } | {
    db?: string; // Database name
    table: string; // Table name
    embeddingField: string;
    query: string;
    limit?: number;
  }

Returns: Array<object>

eleganceServerClient.controllers.chatCompletion.execute

Accepts a prompt, performs vector search, and creates chat completion for the found records.

Parameters:

body: {
    collection: string; // Collection name
    prompt: string; // Prompt text
    model?: string;
    textField?: string; // Field name by which to create a chat completion
    embeddingField?: string; // Field name with the embedding by which to perform the search
    minSimilarity?: number; // Minimum similarity number to filter search results, used to create a chat completion.
    systemRole?: string; // Initial system role
    messages?: CreateChatCompletionBody["messages"]; // Additional messages after the prompt message
    maxTokens?: CreateChatCompletionBody["max_tokens"];
    maxContextLength?: number;
    temperature?: CreateChatCompletionBody["temperature"];
  } | {
    db?: string; // Database name
    table: string; // Table name
    prompt: string;
    model?: string;
    textField?: string;
    embeddingField?: string;
    minSimilarity?: number;
    systemRole?: string;
    messages?: CreateChatCompletionBody["messages"];
    maxTokens?: CreateChatCompletionBody["max_tokens"];
    maxContextLength?: number;
    temperature?: CreateChatCompletionBody["temperature"];
  }

Returns:

{
  content: string;
  context: string;
}
eleganceServerClient.controllers.createFileEmbeddings.execute

Accepts a CSV or PDF file as a DataURL, splits it into chunks and creates embeddings.

Parameters:

body: {
    dataURL: string; // CSV or PDF file DataURL
    textField?: string; // Field name in which to save a chunk text
    embeddingField?: string; // Field name in which to save an embedding
    chunkSize?: number;
  }

Returns: Array<{ text: string; embedding: number[]; }>

eleganceServerClient.controllers.createAndInsertFileEmbeddings.execute

Accepts a CSV or PDF file as a DataURL, splits it into chunks, creates embeddings, and inserts them into a database.

Parameters:

body: {
    collection: string; // Collection name
    dataURL: string; // CSV or PDF file DataURL
    textField?: string; // Field name in which to save a chunk text
    embeddingField?: string; // Field name in which to save an embedding
    chunkSize?: number;
  } | {
    db?: string; // Database name
    table: string; // Table name
    dataURL: string;
    textField?: string;
    embeddingField?: string;
    chunkSize?: number;
  }

Returns: Array<{ text: string; embedding: number[]; }>

eleganceServerClient.openai

Default OpenAI client + helpers

eleganceServerClient.openai.helpers.createEmbedding

Creates embedding using the OpenAI Embeddings API

Parameters:

  • input: string | Array<string> | object | Array<object> - input value

Returns: Array<number>

eleganceServerClient.openai.helpers.embeddingToBuffer

Converts an embedding into a buffer that is then inserted into the database.

Parameters:

  • embedding: Array<number>

Returns: Buffer

eleganceServerClient.openai.helpers.textToEmbeddings

Converts text into embeddings by splitting the text into chunks.

Parameters:

  • text: string
  • options?: {
      chunkSize?: number;
      textField?: string; // Field name in which to save a chunk text
      embeddingField?: string; // Field name in which to save an embedding
    }
    
eleganceServerClient.openai.helpers.dataURLtoEmbeddings

Converts a DataURL (csv, pdf) into an embedding by splitting the text into chunks.

Parameters:

  • dataURL: string
  • options?: {
      chunkSize?: number;
      textField?: string; // Field name in which to save a chunk text
      embeddingField?: string; // Field name in which to save an embedding
    }
    

Returns: Array<{ text: string; embedding: number[] }>

eleganceServerClient.openai.helpers.createChatCompletion

Generates a chat completion using the OpenAI ChatCompletion API.

Parameters:

  • options: ChatCompletionCreateParamsBase

Returns: string

createEleganceClient

Creates an EleganceClient instance for a client.

Parameters:

  • connectionType: "kai" | "mysql"
  • config: {
      baseURL: string; // Server URL with the '/elegance/:route' route handler.
    }
    

Returns: eleganceServerClient

eleganceClient

Client that includes requests and hooks. It is used to make requests to the server.

eleganceClient.requests

Clean functions to make requests to the server. They can be used anywhere within a project and are handled like typical async functions. The parameters for each request correspond to the controller parameters by name. To familiarize with the parameters, refer to the eleganceServerClient.controllers.<requestName>.execute section.

eleganceClient.hooks

Ready-to-use React.js hooks with state handlers that use requests. Each hook has the following type:

<R = any,>(options?: { initialValue?: R; initialIsLoading?: boolean; onError?: (error: DefaultError) => void }) => {
  value: R | undefined;
  error: DefaultError | undefined;
  isLoading: boolean;
  setValue: react.Dispatch<react.SetStateAction<Awaited<R> | undefined>>;
  setError: react.Dispatch<react.SetStateAction<DefaultError | undefined>>;
  setIsLoading: react.Dispatch<react.SetStateAction<boolean>>;
  execute: (body: object) => Promise<Awaited<R> | undefined>; // Function that executes a request from the eleganceClient.requests by name
};

License

Apache 2.0

© 2023 SingleStore

Keywords

FAQs

Package last updated on 06 Nov 2023

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc