Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

@stdlib/stats-base-dists-erlang-cdf

Package Overview
Dependencies
Maintainers
4
Versions
11
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

@stdlib/stats-base-dists-erlang-cdf

Erlang distribution cumulative distribution function (CDF).

  • 0.0.4
  • Source
  • npm
  • Socket score

Version published
Weekly downloads
27K
increased by15.73%
Maintainers
4
Weekly downloads
 
Created
Source

Cumulative Distribution Function

NPM version Build Status Coverage Status dependencies

Erlang distribution cumulative distribution function.

The cumulative distribution function for a Erlang random variable is

Cumulative distribution function for a Erlang distribution.

where k is the shape parameter and lambda is the rate parameter. The Erlang distribution is a special case of the gamma distribution, as k is constrained to the natural numbers.

Installation

npm install @stdlib/stats-base-dists-erlang-cdf

Usage

var cdf = require( '@stdlib/stats-base-dists-erlang-cdf' );
cdf( x, k, lambda )

Evaluates the cumulative distribution function (CDF) for an Erlang distribution with parameters k (shape parameter) and lambda (rate parameter).

var y = cdf( 2.0, 1, 1.0 );
// returns ~0.865

y = cdf( 2.0, 3, 1.0 );
// returns ~0.323

y = cdf( -1.0, 2, 2.0 );
// returns 0.0

y = cdf( -Infinity, 4, 2.0 );
// returns 0.0

y = cdf( +Infinity, 4, 2.0 );
// returns 1.0

If provided NaN as any argument, the function returns NaN.

var y = cdf( NaN, 1, 1.0 );
// returns NaN

y = cdf( 0.0, NaN, 1.0 );
// returns NaN

y = cdf( 0.0, 1, NaN );
// returns NaN

If not provided a nonnegative integer for k, the function returns NaN.

var y = cdf( 2.0, -2, 0.5 );
// returns NaN

y = cdf( 2.0, 0.5, 0.5 );
// returns NaN

If provided k = 0, the function evaluates the CDF of a degenerate distribution centered at 0.

var y = cdf( 2.0, 0.0, 2.0 );
// returns 1.0

y = cdf( -2.0, 0.0, 2.0 );
// returns 0.0

y = cdf( 0.0, 0.0, 2.0 );
// returns 1.0

If provided lambda <= 0, the function returns NaN.

var y = cdf( 2.0, 1, 0.0 );
// returns NaN

y = cdf( 2.0, 1, -5.0 );
// returns NaN
cdf.factory( k, lambda )

Returns a function for evaluating the cumulative distribution function for an Erlang distribution with parameters k (shape parameter) and lambda (rate parameter).

var mycdf = cdf.factory( 2, 0.5 );

var y = mycdf( 6.0 );
// returns ~0.801

y = mycdf( 2.0 );
// returns ~0.264

Examples

var randu = require( '@stdlib/random-base-randu' );
var round = require( '@stdlib/math-base-special-round' );
var cdf = require( '@stdlib/stats-base-dists-erlang-cdf' );

var lambda;
var k;
var x;
var y;
var i;

for ( i = 0; i < 20; i++ ) {
    x = randu() * 10.0;
    k = round( randu() * 10.0 );
    lambda = randu() * 5.0;
    y = cdf( x, k, lambda );
    console.log( 'x: %d, k: %d, λ: %d, F(x;k,λ): %d', x.toFixed( 4 ), k, lambda.toFixed( 4 ), y.toFixed( 4 ) );
}

Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright © 2016-2021. The Stdlib Authors.

Keywords

FAQs

Package last updated on 07 Jul 2021

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc