Research
Security News
Malicious npm Package Targets Solana Developers and Hijacks Funds
A malicious npm package targets Solana developers, rerouting funds in 2% of transactions to a hardcoded address.
@tensorflow/tfjs-converter
Advanced tools
@tensorflow/tfjs-converter is a library that allows you to import TensorFlow SavedModel and Keras models into TensorFlow.js. This enables you to run pre-trained models in the browser or in Node.js, making it easier to deploy machine learning models in web applications.
Import TensorFlow SavedModel
This feature allows you to import a TensorFlow SavedModel into TensorFlow.js. The code sample demonstrates how to load a SavedModel from a specified path and log the model to the console.
const tf = require('@tensorflow/tfjs');
const tfConverter = require('@tensorflow/tfjs-converter');
async function loadModel() {
const model = await tfConverter.loadGraphModel('path/to/saved_model');
console.log(model);
}
loadModel();
Import Keras Model
This feature allows you to import a Keras model into TensorFlow.js. The code sample demonstrates how to load a Keras model from a specified JSON file and log the model to the console.
const tf = require('@tensorflow/tfjs');
const tfConverter = require('@tensorflow/tfjs-converter');
async function loadKerasModel() {
const model = await tfConverter.loadLayersModel('path/to/keras_model.json');
console.log(model);
}
loadKerasModel();
Run Inference
This feature allows you to run inference using a loaded model. The code sample demonstrates how to load a SavedModel, create a tensor as input, run the model's predict function, and print the output.
const tf = require('@tensorflow/tfjs');
const tfConverter = require('@tensorflow/tfjs-converter');
async function runInference() {
const model = await tfConverter.loadGraphModel('path/to/saved_model');
const input = tf.tensor([1, 2, 3, 4]);
const output = model.predict(input);
output.print();
}
runInference();
@tensorflow/tfjs is the core TensorFlow.js library that provides the main functionalities for defining, training, and running machine learning models in the browser and Node.js. While @tensorflow/tfjs-converter focuses on importing pre-trained models, @tensorflow/tfjs provides the tools to build and train models from scratch.
onnxjs is a library for running ONNX (Open Neural Network Exchange) models in the browser and Node.js. It provides similar functionalities to @tensorflow/tfjs-converter but focuses on the ONNX model format instead of TensorFlow SavedModel and Keras models.
brain.js is a JavaScript library for neural networks that runs in the browser and Node.js. It provides functionalities for creating, training, and running neural networks, but it does not support importing TensorFlow or Keras models like @tensorflow/tfjs-converter.
TensorFlow.js converter is an open source library to load a pretrained TensorFlow SavedModel or TensorFlow Hub module into the browser and run inference through TensorFlow.js.
Note: Session bundle and Frozen model formats have been deprecated in TensorFlow.js 1.0. Please use the TensorFlow.js 0.15.x backend to convert these formats, available in tfjs-converter
0.8.6.
A 2-step process to import your model:
0. Please make sure that you run in a Docker container or a virtual environment.
The script pulls its own subset of TensorFlow, which might conflict with the existing TensorFlow/Keras installation.
Note: Check that tf-nightly-2.0-preview
is available for your platform.
Most of the times, this means that you have to use Python 3.6.8 in your local environment. To force Python 3.6.8 in your local project, you can install pyenv
and proceed as follows in the target directory:
pyenv install 3.6.8
pyenv local 3.6.8
Now, you can create and activate a venv
virtual environment in your current folder:
virtualenv --no-site-packages venv
. venv/bin/activate
1. Install the TensorFlow.js pip package:
pip install tensorflowjs
2. Run the converter script provided by the pip package:
The converter expects a TensorFlow SavedModel, TensorFlow Hub module, TensorFlow.js JSON format, Keras HDF5 model, or tf.keras SavedModel for input.
tensorflowjs_converter \
--input_format=tf_saved_model \
--output_format=tfjs_graph_model \
--signature_name=serving_default \
--saved_model_tags=serve \
/mobilenet/saved_model \
/mobilenet/web_model
tensorflowjs_converter \
--input_format=tf_hub \
'https://tfhub.dev/google/imagenet/mobilenet_v1_100_224/classification/1' \
/mobilenet/web_model
tensorflowjs_converter \
--input_format=keras \
/tmp/my_keras_model.h5 \
/tmp/my_tfjs_model
tensorflowjs_converter \
--input_format=keras_saved_model \
/tmp/my_tf_keras_saved_model/1542211770 \
/tmp/my_tfjs_model
Note that the input path used above is a subfolder that has a Unix epoch time (1542211770) and is generated automatically by tensorflow when it saved a tf.keras model in the SavedModel format.
Positional Arguments | Description |
---|---|
input_path | Full path of the saved model directory or TensorFlow Hub module handle or path. |
output_path | Path for all output artifacts. |
Options | Description |
---|---|
--input_format | The format of input model, use tf_saved_model for SavedModel, tf_hub for TensorFlow Hub module, tfjs_layers_model for TensorFlow.js JSON format, and keras for Keras HDF5. |
--output_format | The desired output format. Must be tfjs_layers_model , tfjs_graph_model or keras . Not all pairs of input-output formats are supported. Please file a github issue if your desired input-output pair is not supported. |
--saved_model_tags | Only applicable to SavedModel conversion. Tags of the MetaGraphDef to load, in comma separated format. Defaults to serve . |
--signature_name | Only applicable to TensorFlow SavedModel and Hub module conversion, signature to load. Defaults to serving_default for SavedModel and default for Hub module. See https://www.tensorflow.org/hub/common_signatures/. |
--strip_debug_ops | Strips out TensorFlow debug operations Print , Assert , CheckNumerics . Defaults to True . |
--quantization_bytes | How many bytes to optionally quantize/compress the weights to. Valid values are 1 and 2. which will quantize int32 and float32 to 1 or 2 bytes respectively. The default (unquantized) size is 4 bytes. |
Note: If you want to convert TensorFlow frozen model or session bundle, you can install older versions of the tensorflowjs pip package, i.e. pip install tensorflowjs==0.8.6
.
Note: Unless stated otherwise, we can infer the value of --output_format
from the
value of --input_format
. So the --output_format
flag can be omitted in
most cases.
--input_format | --output_format | Description |
---|---|---|
keras | tfjs_layers_model | Convert a keras or tf.keras HDF5 model file to TensorFlow.js Layers model format. Use tf.loadLayersModel() to load the model in JavaScript. The loaded model supports the full inference and training (e.g., transfer learning) features of the original keras or tf.keras model. |
keras | tfjs_graph_model | Convert a keras or tf.keras HDF5 model file to TensorFlow.js Graph model format. Use tf.loadGraphModel() to load the converted model in JavaScript. The loaded model supports only inference, but the speed of inference is generally faster than that of a tfjs_layers_model (see above row) thanks to the graph optimization performed by TensorFlow. Another limitation of this conversion route is that it does not support some layer types (e.g., recurrent layers such as LSTM) yet. |
keras_saved_model | tfjs_layers_model | Convert a tf.keras SavedModel model file (from tf.contrib.saved_model.save_keras_model ) to TensorFlow.js Layers model format. Use tf.loadLayersModel() to load the model in JavaScript. |
tf_hub | tfjs_graph_model | Convert a TF-Hub model file to TensorFlow.js graph model format. Use tf.loadGraphModel() to load the converted model in JavaScript. |
tf_saved_model | tfjs_graph_model | Convert a TensorFlow SavedModel to TensorFlow.js graph model format. Use tf.loadGraphModel() to load the converted model in JavaScript. |
--input_format | --output_format | Description |
---|---|---|
tfjs_layers_model | keras | Convert a TensorFlow.js Layers model (JSON + binary weight file(s)) to a Keras HDF5 model file. Use keras.model.load_model() or tf.keras.models.load_model() to load the converted model in Python. |
The tfjs_layers_model-to-tfjs_layer_model conversion option serves the following purposes:
It allows you to shard the binary weight file into multiple small shards to facilitate browser caching. This step is necessary for models with large-sized weights saved from TensorFlow.js (either browser or Node.js), because TensorFlow.js puts all weights in a single weight file ('group1-shard1of1.bin'). To shard the weight file, do
tensorflowjs_converter \
--input_format tfjs_layers_model \
--output_format tfjs_layers_model \
original_model/model.json \
sharded_model/
The command above creates shards of size 4 MB (4194304 bytes) by default.
Alternative shard sizes can be specified using the
--weight_shard_size_bytes
flag.
It allows you to reduce the on-the-wire size of the weights through 16- or 8-bit quantization. For example:
tensorflowjs_converter \
--input_format tfjs_layers_model \
--output_format tfjs_layers_model \
--quantization_bytes 2 \
original_model/model.json
quantized_model/
Converting a tfjs_layers_model
to a tfjs_graph_model
usually leads to
faster inference speed in the browser and Node.js, thanks to the graph
optimization that goes into generating the tfjs_graph_models. For more details,
see the following document on TensorFlow's Grappler:
"TensorFlow Graph Optimizations" by R. Larsen an T. Shpeisman.
There are two caveats:
See example command below:
tensorflowjs_converter \
--input_format tfjs_layers_model \
--output_format tfjs_graph_model \
my_layers_model/model.json
my_graph_model/
tfjs_layers_model-to-tfjs_graph_model also support weight quantization.
The conversion script above produces 2 types of files:
model.json
(the dataflow graph and weight manifest file)group1-shard\*of\*
(collection of binary weight files)For example, here is the MobileNet model converted and served in following location:
https://storage.cloud.google.com/tfjs-models/savedmodel/mobilenet_v1_1.0_224/model.json
https://storage.cloud.google.com/tfjs-models/savedmodel/mobilenet_v1_1.0_224/group1-shard1of5
...
https://storage.cloud.google.com/tfjs-models/savedmodel/mobilenet_v1_1.0_224/group1-shard5of5
If the original model was a SavedModel
, use tf.loadGraphModel()
. If it was Keras, use tf.loadLayersModel()
:
import * as tf from '@tensorflow/tfjs';
const MODEL_URL = 'https://.../mobilenet/model.json';
const model = await tf.loadGraphModel(MODEL_URL); // For Keras use tf.loadLayersModel()
const cat = document.getElementById('cat');
model.predict(tf.browser.fromPixels(cat));
See our API docs for the predict()
method. To see what other methods exist on a Model
, see tf.LayersModel
and tf.GraphModel
. Also check out our working MobileNet demo.
If your server requests credentials for accessing the model files, you can provide the optional RequestOption param.
const model = await loadGraphModel(MODEL_URL,
{credentials: 'include'});
Please see fetch() documentation for details.
TensorFlow.js can be used from Node.js. See the
tfjs-node project for more details.
Unlike web browsers, Node.js can access the local file system directly.
Therefore, you can load the same frozen model from local file system into
a Node.js program running TensorFlow.js. This is done by calling loadGraphModel
with the path
to the model files:
// Load the tfjs-node binding
import * as tf from '@tensorflow/tfjs-node';
const MODEL_PATH = 'file:///tmp/mobilenet/model.json';
const model = await tf.loadGraphModel(MODEL_PATH);
You can also load the remote model files the same way as in browser, but you might need to polyfill the fetch() method.
Currently TensorFlow.js only supports a limited set of TensorFlow Ops. See the
full list.
If your model uses unsupported ops, the tensorflowjs_converter
script will fail and
produce a list of the unsupported ops in your model. Please file issues to let us
know what ops you need support with.
If you want to manually write the forward pass with the ops API, you can load the weights directly as a map from weight names to tensors:
import * as tf from '@tensorflow/tfjs';
const modelUrl = "https://example.org/model/model.json";
const response = await fetch(modelUrl);
this.weightManifest = (await response.json())['weightsManifest'];
const weightMap = await tf.io.loadWeights(
this.weightManifest, "https://example.org/model");
weightMap
maps a weight name to a tensor. You can use it to manually implement the forward pass of the model:
const input = tf.tensor(...);
tf.matMul(weightMap['fc1/weights'], input).add(weightMap['fc1/bias']);
1. What TensorFlow models does the converter currently support?
Image-based models (MobileNet, SqueezeNet, add more if you tested) are the most supported. Models with control flow ops (e.g. RNNs) are also supported. The tensorflowjs_converter script will validate the model you have and show a list of unsupported ops in your model. See this list for which ops are currently supported.
2. Will model with large weights work?
While the browser supports loading 100-500MB models, the page load time, the inference time and the user experience would not be great. We recommend using models that are designed for edge devices (e.g. phones). These models are usually smaller than 30MB.
3. Will the model and weight files be cached in the browser?
Yes, we are splitting the weights into files of 4MB chunks, which enable the browser to cache them automatically. If the model architecture is less than 4MB (most models are), it will also be cached.
4. Can I quantize the weights over the wire?
Yes, you can use the --quantization_bytes option to compress int32/float32 to 1 or 2 bytes. Here is an example of 8-bit quantization:
tensorflowjs_converter \
--input_format=tf_hub \
--quantization_bytes=1
'https://tfhub.dev/google/imagenet/mobilenet_v1_100_224/classification/1' \
/mobilenet/web_model
5. Why is the predict() method for inference so much slower on the first call than the subsequent calls?
The time of first call also includes the compilation time of WebGL shader programs for the model. After the first call the shader programs are cached, which makes the subsequent calls much faster. You can warm up the cache by calling the predict method with an all zero inputs, right after the completion of the model loading.
6. I have a model converted with a previous version of TensorFlow.js converter (0.15.x), that is in .pb format. How do I convert it to the new JSON format?
You can use the built-in migration tool to convert the models generated by previous versions. Here are the steps:
git clone git@github.com:tensorflow/tfjs-converter.git
cd tfjs-converter
yarn
yarn ts-node tools/pb2json_converter.ts pb_model_directory/ json_model_directory/
pb_model_directory
is the directory where the model generated by previous version is located.
json_model_directory
is the destination directory for the converted model.
7. I have a model formatted as a Session bundle or Frozen model. How do I convert it to TensorFlow.js?
You can install a previous version of TensorFlow.js in a virtual environment to convert the model to the JSON format. Here is how you can achieve this.
virtualenv --no-site-packages venv
. venv/bin/activate
pip install tensorflowjs==0.8.6
venv
is the name of the virtual environment.
tensorflowjs_converter \
--input_format=tf_session_bundle \
--output_json=true \
--output_node_names='MobilenetV1/Predictions/Reshape_1' \
/mobilenet/session_bundle \
/mobilenet/web_model
tensorflowjs_converter \
--input_format=tf_frozen_model \
--output_json=true \
--output_node_names='MobilenetV1/Predictions/Reshape_1' \
--saved_model_tags=serve \
/mobilenet/frozen_model.pb \
/mobilenet/web_model
To build TensorFlow.js converter from source, we need to clone the project and prepare the dev environment:
git clone https://github.com/tensorflow/tfjs-converter.git
cd tfjs-converter
$ yarn # Installs dependencies.
We recommend using Visual Studio Code for
development. Make sure to install
TSLint VSCode extension
and the npm clang-format 1.2.2
or later
with the
Clang-Format VSCode extension
for auto-formatting.
Before submitting a pull request, make sure the code passes all the tests and is clean of lint errors:
yarn test
yarn lint
To run a subset of tests and/or on a specific browser:
yarn test --browsers=Chrome --grep='execute'
> ...
> Chrome 64.0.3282 (Linux 0.0.0): Executed 39 of 39 SUCCESS (0.129 secs / 0 secs)
To run the tests once and exit the karma process (helpful on Windows):
yarn test --single-run
FAQs
Tensorflow model converter for javascript
The npm package @tensorflow/tfjs-converter receives a total of 164,985 weekly downloads. As such, @tensorflow/tfjs-converter popularity was classified as popular.
We found that @tensorflow/tfjs-converter demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 10 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
Security News
A malicious npm package targets Solana developers, rerouting funds in 2% of transactions to a hardcoded address.
Security News
Research
Socket researchers have discovered malicious npm packages targeting crypto developers, stealing credentials and wallet data using spyware delivered through typosquats of popular cryptographic libraries.
Security News
Socket's package search now displays weekly downloads for npm packages, helping developers quickly assess popularity and make more informed decisions.