Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

@travetto/di

Package Overview
Dependencies
Maintainers
1
Versions
313
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

@travetto/di

Dependency registration/management and injection support.

  • 3.1.1
  • Source
  • npm
  • Socket score

Version published
Weekly downloads
63
decreased by-84.05%
Maintainers
1
Weekly downloads
 
Created
Source

Dependency Injection

Dependency registration/management and injection support.

Install: @travetto/di

npm install @travetto/di

# or

yarn add @travetto/di

Dependency injection is a framework primitive. When used in conjunction with automatic file scanning, it provides for handling of application dependency wiring. Due to the nature of Typescript and type erasure of interfaces, dependency injection only supports classes as a type signifier. The primary goal of dependency injection is to allow for separation of concerns of object creation and it's usage.

Declaration

The @Injectable and @InjectableFactory decorators provide the registration of dependencies. Dependency declaration revolves around exposing classes and subtypes thereof to provide necessary functionality. Additionally, the framework will utilize dependencies to satisfy contracts with various implementation.

Code: Example Injectable

import { Injectable } from '@travetto/di';

@Injectable()
class CustomService {
  async coolOperation() {
    // Do work!
  }
}

When declaring a dependency, you can also provide a token to allow for multiple instances of the dependency to be defined. This can be used in many situations:

Code: Example Injectable with multiple targets

import { Injectable, Inject } from '@travetto/di';

@Injectable()
class CustomService {
  async coolOperation() {
    // do work!
  }
}

const CUSTOM2 = Symbol.for('di-custom2');

@Injectable({ target: CustomService, qualifier: CUSTOM2 })
class CustomService2 extends CustomService {
  override async coolOperation() {
    await super.coolOperation();
    // Do some additional work
  }
}

class Consumer {
  @Inject(CUSTOM2) // Pull in specific service
  service: CustomService;
}

As you can see, the target field is also set, which indicates to the dependency registration process what class the injectable is compatible with. Additionally, when using abstract classes, the parent class is always considered as a valid candidate type.

Code: Example Injectable with target via abstract class

import { Injectable } from '@travetto/di';

abstract class BaseService {
  abstract work(): Promise<void>;
}

@Injectable()
class SpecificService extends BaseService {
  async work() {
    // Do some additional work
  }
}

In this scenario, SpecificService is a valid candidate for BaseService due to the abstract inheritance. Sometimes, you may want to provide a slight variation to a dependency without extending a class. To this end, the @InjectableFactory decorator denotes a static class method that produces an @Injectable.

Code: Example InjectableFactory

import { InjectableFactory } from '@travetto/di';

// Not injectable by default
class CoolService {

}

class Config {
  @InjectableFactory()
  static initService() {
    return new CoolService();
  }
}

Given the static method initService, the function will be provided as a valid candidate for CoolService. Instead of calling the constructor of the type directly, this function will work as a factory for producing the injectable.

Note: Other modules are able to provide aliases to @Injectable that also provide additional functionality. For example, the Configuration module @Config or the RESTful API module @Controller decorator registers the associated class as an injectable element.

Injection

Once all of your necessary dependencies are defined, now is the time to provide those @Injectable instances to your code. There are three primary methods for injection:

The @Inject decorator, which denotes a desire to inject a value directly. These will be set post construction.

Code: Example Injectable with dependencies as Inject fields

import { Injectable, Inject } from '@travetto/di';
import { DependentService } from './dep';

@Injectable()
class CustomService {
  @Inject()
  private dependentService: DependentService;

  async coolOperation() {
    await this.dependentService.doWork();
  }
}

The @Injectable constructor params, which will be provided as the instance is being constructed.

Code: Example Injectable with dependencies in constructor

import { Injectable } from '@travetto/di';
import { DependentService } from './dep';

@Injectable()
class CustomService {
  constructor(private dependentService: DependentService) { }

  async coolOperation() {
    await this.dependentService.doWork();
  }
}

Via @InjectableFactory params, which are comparable to constructor params

Code: Example InjectableFactory with parameters as dependencies

import { InjectableFactory } from '@travetto/di';

import { DependentService, CustomService } from './dep';

class Config {
  @InjectableFactory()
  static initService(dependentService: DependentService) {
    return new CustomService(dependentService);
  }
}

Multiple Candidates for the Same Type

If you are building modules for others to consume, often times it is possible to end up with multiple implementations for the same class.

Code: Example Multiple Candidate Types

import { Injectable, Inject } from '@travetto/di';

export abstract class Contract {

}

@Injectable()
class SimpleContract extends Contract { }

@Injectable()
export class ComplexContract extends Contract { }

@Injectable()
class ContractConsumer {
  // Will default to SimpleContract if nothing else registered
  @Inject()
  contract: Contract;
}

By default, if there is only one candidate without qualification, then that candidate will be used. If multiple candidates are found, then the injection system will bail. To overcome this the end user will need to specify which candidate type should be considered primary:

Code: Example Multiple Candidate Types

import { InjectableFactory } from '@travetto/di';
import { Contract, ComplexContract } from './injectable-multiple-default';

class Config {
  // Complex will be marked as the available Contract
  @InjectableFactory({ primary: true })
  static getContract(complex: ComplexContract): Contract {
    return complex;
  }
}

Non-Framework Dependencies

The module is built around the framework's management of class registration, and being able to decorate the code with @Injectable decorators. There may also be a desire to leverage external code and pull it into the dependency injection framework. This could easily be achieved using a wrapper class that is owned by the framework.

It is also possible to directly reference external types, and they will be converted into unique symbols. These symbols cannot be used manually, but can be leveraged using @Inject decorators.

Code: Example External Dependencies

import { EventEmitter } from 'events';
import { Writable } from 'stream';

import { Inject, Injectable, InjectableFactory } from '@travetto/di';

class Source {
  @InjectableFactory()
  static emitter(): EventEmitter {
    return new EventEmitter();
  }

  @InjectableFactory(Symbol.for('custom-1'))
  static writable(): Writable {
    return {} as Writable;
  }

  @InjectableFactory(Symbol.for('custom-2'))
  static writableAlt(): Writable {
    return {} as Writable;
  }
}

@Injectable()
class Service {
  @Inject()
  emitter: EventEmitter;

  @Inject(Symbol.for('custom-2'))
  writable: Writable;
}

Manual Invocation

Some times you will need to lookup a dependency dynamically, or you want to control the injection process at a more granular level. To achieve that you will need to directly access the DependencyRegistry. The registry allows for requesting a dependency by class reference:

Code: Example of Manual Lookup

import { Injectable, DependencyRegistry } from '@travetto/di';

@Injectable()
class Complex { }

class ManualLookup {
  async invoke() {
    const complex = await DependencyRegistry.getInstance(Complex);
    return complex;
  }
}

Additionally, support for interfaces (over class inheritance) is provided, but requires binding the interface to a concrete class as the interface does not exist at runtime.

Code: Example Interface Injection

import { DependencyRegistry, Inject, Injectable, InjectableFactory } from '@travetto/di';

class TargetConcrete { }

/**
 * @concrete .:TargetConcrete
 */
export interface ServiceContract {
  deleteUser(userId: string): Promise<void>;
}

class MyCustomService implements ServiceContract {
  async deleteUser(userId: string): Promise<void> {
    // Do something
  }
}

@Injectable()
class SpecificService {

  @Inject()
  service: ServiceContract;
}

class ManualInvocationOfInterface {
  @InjectableFactory()
  static getCustomService(): Promise<ServiceContract> {
    return DependencyRegistry.getInstance<ServiceContract>(TargetConcrete);
  }
}

Keywords

FAQs

Package last updated on 01 Apr 2023

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc