VIZABI DATA CORE
Vizabi data core uses data visualization language to configure data queries and transformations of multidimensional data. Its output is an array of objects representing a data table for use in other visualization libraries, such as vizabi-charts, d3, vega and others.
Dependencies
Vizabi-data is built using MobX 5 for state management and expects it as a peer dependency, i.e. you include it on the page. It is not built in because this setup allows you to interact reactively with Vizabi-core [docs] [gh issue].
Another peer dependency is D3, used mostly for scales, time parsing in csv files and some handy array functions. It is included as a peer dependency too because one is likely to already have it in the page for the purpose of visualisations.
Usage
Let ./data/readme.csv
have content as follows:
country | year | income | life_expectancy | population | world_region |
---|
Sweden | 1991 | 24253 | 78 | 8616729 | Europe |
Russia | 1991 | 19600 | 69 | 148000000 | Europe |
... | ... | ... | ... | ... | ... |
then by discribing a marker, feeding it to Vizabi and listening to its state we will get the same table prepared for data binding in visualisation:
<script src="https://cdnjs.cloudflare.com/ajax/libs/mobx/5.15.7/mobx.umd.min.js"></script>
<script src="https://d3js.org/d3.v6.min.js"></script>
<script src="Vizabi.js"></script>
<script>
const marker = Vizabi.marker({
data: {
source: {
path: './data/readme.csv',
keyConcepts: ['country', 'year']
},
space: ['country', 'year']
},
encoding: {
x: { data: { concept: 'income' } },
y: { data: { concept: 'life_expectancy' } },
size: {
data: { concept: 'population' },
scale: {
range: [1, 50]
}
},
color: {
data: { concept: 'world_region' },
scale: {
domain: ['Africa', 'Americas', 'Asia', 'Europe'],
range: ['blue','green','red','yellow']
}
}
}
})
marker.on('dataArray', console.log)
mobx.autorun(() => marker.state == 'fulfilled' && console.log(marker.dataArray));
</script>
This will output a data array (notice the added key in Symbol and the renaming of columns):
[{
country: "Sweden", year: 1991, x: 24253, y: 78, size: 8616729, color: "Europe", Symbol(key): "Sweden¬1991"
}.{
country: "Russia", year: 1991, x: 19600, y: 69, size: 148000000, color: "Europe", Symbol(key): "Russia¬1991"
}]
Use scales inside the models to resolve data values to visual properties:
marker.encoding.size.scale.d3Scale(148000000)
marker.encoding.color.scale.d3Scale("Europe")
Then, if we modify the state of the marker, for example, if we change x
to also display life_expectancy
:
marker.encoding.x.data.config.concept = "life_expectancy"
The console.log inside autorun
will run again and the output this time will be different:
[{
country: "Sweden", year: 1991, x: 78, y: 78, size: 8616729, color: "Europe", Symbol(key): "Sweden¬1991"
}.{
country: "Russia", year: 1991, x: 69, y: 69, size: 148000000, color: "Europe", Symbol(key): "Russia¬1991"
}]
Developing the project
Approved environment: node v14.17.1 npm v7.19.0
Run a demo chart
clone, run npm install
, then npm start
,
see output at http://localhost:9000
Run tests
run all tests
npm test
run a single test
npm test -- /config.test.js
run a single test with watch
npm test -- /config.test.js --watch
debug a single test with breakpoints in VS Code
npm run debug -- /config.test.js
Build the bundle
npm run build
, see output in /dist/Vizabi.js
Pubishing
Upon publishing the package with npm publish
it will automatically npm test
&& npm run build
first
Source code files overview, scale by file size