Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

baobab

Package Overview
Dependencies
Maintainers
1
Versions
64
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

baobab

JavaScript persistent data tree with cursors.

  • 2.2.1
  • Source
  • npm
  • Socket score

Version published
Weekly downloads
3.4K
increased by2.27%
Maintainers
1
Weekly downloads
 
Created
Source

Build Status

Baobab

Baobab is a JavaScript persistent and immutable (at least by default) data tree supporting cursors and enabling developers to easily navigate and monitor nested data through events.

It is mainly inspired by functional zippers (such as Clojure's ones) and by Om's cursors.

It aims at providing a centralized model holding an application's state and can be paired with React easily through mixins, higher order components, wrapper components or decorators (available there).

Fun fact: A Baobab, or Adansonia digitata, is a very big and magnificient African tree.

Summary

Example

var Baobab = require('baobab');

var tree = new Baobab({
  palette: {
    colors: ['yellow', 'purple'],
    name: 'Glorious colors'
  }
});

var colorsCursor = tree.select('palette', 'colors');

colorsCursor.on('update', function() {
  console.log('Selected colors have updated!');
});

colorsCursor.push('orange');

Installation

If you want to use Baobab with node.js or browserify/webpack etc., you can use npm.

npm install baobab

# Or if you need the latest dev version
npm install git+https://github.com/Yomguithereal/baobab.git

If you want to use it in the browser, just include the minified script located here.

<script src="baobab.min.js"></script>

Or install with bower:

bower install baobab

The library (as a standalone) currently weighs ~8kb gzipped.

Usage

Basics

Instantiation

Creating a tree is as simple as instantiating Baobab with an initial data set.

var Baobab = require('baobab');

var tree = new Baobab({hello: 'world'});

// Retrieving data from your tree
tree.get();
>>> {hello: 'world'}
Cursors

Then you can create cursors to easily access nested data in your tree and listen to changes concerning the part of the tree you selected.

// Considering the following tree
var tree = new Baobab({
  palette: {
    name: 'fancy',
    colors: ['blue', 'yellow', 'green']
  }
});

// Creating a cursor on the palette
var paletteCursor = tree.select('palette');
paletteCursor.get();
>>> {name: 'fancy', colors: ['blue', 'yellow', 'green']}

// Creating a cursor on the palette's colors
var colorsCursor = tree.select('palette', 'colors');
colorsCursor.get();
>>> ['blue', 'yellow', 'green']

// Creating a cursor on the palette's third color
var thirdColorCursor = tree.select('palette', 'colors', 2);
thirdColorCursor.get();
>>> 'green'

// Note that you can also perform subselections if needed
var colorCursor = paletteCursor.select('colors');
Updates

A baobab tree can obviously be updated. However, one has to understand that, even if you can write the tree synchronously, update events won't be, at least by default, fired until next frame.

If you really need to fire an update synchronously (typically if you store a form's state within your app's state, for instance), your remain free to use the tree.commit() method or tweak the tree's options to fit your needs.

Important: Note that the tree, being a persistent data structure, will shift the references of the objects it stores in order to enable immutable comparisons between one version of the state and another (this is especially useful when using strategies as such as React's pure rendering).

Example

var tree = new Baobab({hello: 'world'});

var initialState = tree.get();
tree.set('hello', 'monde');

// After asynchronous update...
assert(initialState !== tree.get());
Cursor level

Since Baobab is immutable by default, note that all the methods below will return the data of the updated node for convenience and so you don't have to use .get afterwards to continue what you were doing.

Replacing data at cursor

var newData = cursor.set({hello: 'world'});

Setting a key

var newData = cursor.set('hello', 'world');

// Nested path
var newData = cursor.set(['one', 'two'], 'world');
// Same as
var newData = cursor.select('one', 'two').set('world');
// Or
var newData = cursor.select('one').set('two', 'world');

Removing data at cursor

cursor.unset();

Unsetting a key

cursor.unset('hello');

// Nested path
cursor.unset(['one', 'two']);

Pushing values

Obviously this will fail if the value at cursor is not an array.

var newArray = cursor.push('purple');

// At key
var newArray = cursor.push('list', 'orange')

// Nested path
var newArray = cursor.push(['one', 'two'], 'orange');

Unshifting values

Obviously this will fail if the value at cursor is not an array.

var newArray = cursor.unshift('purple');

// At key
var newArray = cursor.unshift('list', 'orange')

// Nested path
var newArray = cursor.unshift(['one', 'two'], 'orange');

Concatenating

Obviously this will fail if the value at cursor is not an array.

var newArray = cursor.concat(['purple', 'yellow']);

// At key
var newArray = cursor.concat('list', ['purple', 'yellow'])

// Nested path
var newArray = cursor.concat(['one', 'two'], ['purple', 'yellow']);

Splicing an array

Obviously this will fail if the value at cursor is not an array.

var newArray = cursor.splice([1, 1]);

// Applying splice n times with different arguments
var newArray = cursor.splice([[1, 2], [3, 2, 'hello']]);

// At key
var newArray = cursor.splice('list', [1, 1])

// Nested path
var newArray = cursor.splice(['one', 'two'], [1, 1]);

Applying a function

var inc = function(currentData) {
  return currentData + 1;
};

var newData = cursor.apply(inc);

// At key
var newData = cursor.apply('number', inc)

// Nested path
var newData = cursor.apply(['one', 'two'], inc);

Shallow merging objects

Obviously this will fail if the value at cursor is not an object.

var newObject = cursor.merge({hello: 'world'});

// At key
var newObject = cursor.merge('object', {hello: 'world'})

// Nested path
var newObject = cursor.merge(['one', 'two'], {hello: 'world'});

Deep merging objects

Obviously this will fail if the value at cursor is not an object.

var newObject = cursor.deepMerge({hello: 'world'});

// At key
var newObject = cursor.deepMerge('object', {hello: 'world'})

// Nested path
var newObject = cursor.deepMerge(['one', 'two'], {hello: 'world'});
Tree level

Note that you can use any of the above methods on the tree itself for convenience:

Example

// Completely replacing the tree's data
tree.set({hello: 'world'});

// Setting value at key
tree.set('hello', 'world');

// Nested path
tree.set(['message', 'hello'], 'world');

// Every other methods also work
tree.set
tree.unset
tree.apply
tree.push
tree.unshift
tree.splice
tree.concat
tree.merge
tree.deepMerge
Events

Whenever an update is committed, events are fired to notify relevant parts of the tree that data was changed so that bound elements, UI components, for instance, may update.

Note however that only relevant cursors will be notified of a change.

Events can be bound to either the tree or cursors using the on method.

Example

// Considering the following tree
var tree = new Baobab({
  users: {
    john: {
      firstname: 'John',
      lastname: 'Silver'
    },
    jack: {
      firstname: 'Jack',
      lastname: 'Gold'
    }
  }
});

// And the following cursors
var usersCursor = tree.select('users'),
    johnCursor = usersCursor.select('john'),
    jackCursor = usersCursor.select('jack');

// If we update both users
johnCursor.set('firstname', 'John the third');
jackCursor.set('firstname', 'Jack the second');
// Every cursor above will be notified of the update

// But if we update only john
johnCursor.set('firstname', 'John the third');
// Only the users and john cursors will be notified
Tree level

update

Will fire if the tree is updated (this concerns the asynchronous updates of the tree).

tree.on('update', function(e) {
  var eventData = e.data;

  console.log('Current data:', eventData.currentData);
  console.log('Previous data:', eventData.previousData);
  console.log('Transaction details:', eventData.transaction);
  console.log('Affected paths', eventData.paths);
});

write

Will fire whenever the tree is written (synchronously, unlike the update event).

tree.on('write', function(e) {
  console.log('Affected path:', e.data.path);
});

invalid

Will fire if the validate function (see options) returned an error for the current update.

tree.on('invalid', function(e) {
  console.log('Error:', e.data.error);
});

get

Will fire whenever data is accessed in the tree.

tree.on('get', function(e) {
  console.log('Path:', e.data.path);
  console.log('Solved path:', e.data.solvedPath);
  console.log('Target data:', e.data.data);
});

select

Will fire whenever a path is selected in the tree.

tree.on('select', function(e) {
  console.log('Path:', e.data.path);
  console.log('Resultant cursor:', e.data.cursor);
});
Cursor level

update

Will fire if data watched over by the cursor has updated.

cursor.on('update', function(e) {
  console.log('Current data:', eventData.currentData);
  console.log('Previous data:', eventData.previousData);
});
N.B.

For more information concerning Baobab's event emitting, see the emmett library.

Advanced

Polymorphisms

If you ever need to, know that there are many ways to select and retrieve data within a baobab.

var tree = new Baobab({
  palette: {
    name: 'fancy',
    colors: ['blue', 'yellow', 'green'],
    currentColor: 1,
    items: [{id: 'one', value: 'Hey'}, {id: 'two', value: 'Ho'}]
  }
});

// Selecting
var colorsCursor = tree.select('palette', 'colors');
var colorsCursor = tree.select(['palette', 'colors']);
var colorsCursor = tree.select('palette').select('colors');

var paletteCursor = tree.select('palette');

// Retrieving data
colorsCursor.get(1);
>>> 'yellow'

paletteCursor.get('colors', 2);
>>> 'green'

tree.get('palette', 'colors');
tree.get(['palette', 'colors']);
>>> ['blue', 'yellow', 'green']

// Retrieving or selecting data by passing a function in the path
var complexCursor = tree.select('palette', 'colors', function(color) {
  return color === 'green';
});

tree.get('palette', 'colors', function(color) {
  return color === 'green';
});
>>> 'green'

// Retrieving or selecting data by passing a descriptor object in the path
var complexCursor = tree.select('items', {id: 'one'}, 'value');
tree.get('items', {id: 'one'}, 'value');
>>> 'Hey'

// Creating a blank tree
var blankTree = new Baobab();

Note: when using a function or a descriptor object in a path, you are not filtering but rather selecting the first matching element. (It's actually the same as using something like lodash's _.find).

Computed data or "Monkey Business"

For convenience, Baobab allows you to store computed data within the tree.

It does so by letting you create "monkeys" that you should really consider as dynamic nodes within your tree (v1 users: "monkeys" are merely the evolution of "facets").

As such, while monkeys represent reduction of the current state (a filtered list used by multiple component throughout your app, for instance), they do have a physical existence within the tree.

This means that you can add / modify / move / remove monkeys from the tree at runtime and place them wherever you want.

The reason why computed data now sits within the tree itself is so that components don't need to know from which kind of data, static or computed, they must draw their dependencies and so that read/select API might stay the same across the whole library.

Example

var monkey = Baobab.monkey;
// Or if you hate similes and fancy naming
var dynamicNode = Baobab.dynamicNode;

// Declarative definition syntax
var tree = new Baobab({
  user: {
    name: 'John',
    surname: 'Smith',
    fullname: monkey({
      cursors: {
        name: ['user', 'name'],
        surname: ['user', 'surname']
      },
      get: function(data) {
        return data.name + ' ' + data.surname;
      }
    })
  },
  data: {
    messages: [
      {from: 'John', txt: 'Hey'},
      {from: 'Jack', txt: 'Ho'}
    ],
    fromJohn: monkey({
      cursors: {
        messages: ['data', 'messages'],
      },
      get: function(data) {
        return data.messages.filter(function(m) {
          return m.from === 'John';
        });
      }
    })
  }
});

// Alternate shorthand definition syntax
var tree = new Baobab({
  user: {
    name: 'John',
    surname: 'Smith',
    fullname: monkey(
      ['user', 'name'],
      ['user', 'surname'],
      function(name, surname) {
        return name + ' ' + surname;
      }
    )
  },
  data: {
    messages: [
      {from: 'John', txt: 'Hey'},
      {from: 'Jack', txt: 'Ho'}
    ],
    fromJohn: monkey(
      ['data', 'messages'],
      function(messages) {
        return messages.filter(function(m) {
          return m.from === 'John';
        });
      }
    )
  }
});

// Finally, know that you can use relative paths for convenience
var tree = new Baobab({
  data: {
    user: {
      name: 'John',
      surname: 'Smith',
      fullname: monkey(
        ['.', 'name'],
        ['.', 'surname'],
        function(name, surname) {
          return name + ' ' + surname;
        }
      ),
      evenMoreNested: {
        fullname: monkey(
          ['..', 'name'],
          ['..', 'surname'],
          function(name, surname) {
            return name + ' ' + surname;
          }
        )
      }
    }
  }
});

// You can then access or select data naturally
tree.get('user', 'fullname');
>>> 'John Smith'

tree.get('data', 'fromJohn');
>>> [{from: 'John', txt: 'Hey'}]

// You can also access/select data beneath a monkey
tree.get('data', 'fromJohn', 'txt');
>>> 'Hey'

var cursor = tree.select('data', 'fromJohn', 'txt');

// Just note that computed data node is read-only and that the tree
// will throw if you try to update a path lying beyond a computed node
tree.set(['data', 'fromJohn', 'txt'], 'Yay');
>>> Error!

// You can add / remove / modify a monkey at runtime using the same API
tree.set(['data', 'fromJack'], monkey({
  cursors: {
    messages: ['data', 'messages'],
    function(messages) {
      return messages.filter(function(m) {
        return m.from === 'Jack';
      });
    }
  }
}));

Notes

  • The dynamic nodes will of course automatically update whenever at least one of the watched paths is updated.
  • The dynamic nodes are lazy and won't actually be computed before you get them (plus they will only compute once before they need to change, so if you get the same dynamic node twice, the computation won't rerun).
  • There are cases where it is clearly overkill to rely on a dynamic node. For instance, if only a single component of your app needs to access a computed version of the central state, then compute this version into the rendering logic of said component for simplicity's sake (a React component's render function for instance). Dynamic nodes are somewhat part of an optimization scheme.
  • Know that the tree/cursor.serialize method exists would you need to retrieve data stripped of dynamic nodes from your tree.
Specialized getters

tree/cursor.exists

Check whether a specific path exists within the tree (won't fire a get event).

// Probably true
tree.exists();

// Does the cursor points at an existing path?
cursor.exists();

// Can also take a path
tree.exists('hello');
tree.exists('hello', 'message');
tree.exists(['hello', 'message']);

tree/cursor.serialize

Retrieve only raw data (therefore avoiding computed data) from the tree or a cursor.

This is useful when you want to serialize your tree into JSON, for instance.

tree.serialize();
cursor.serialize();

// Can also take a path
tree.serialize('hello');
tree.serialize('hello', 'message');
tree.serialize(['hello', 'message']);

tree.watch

Create a watcher that will fire an update event if any of the given paths is affected by a transaction.

This is useful to create modules binding a state tree to UI components.

// Considering the following tree
var tree = new Baobab({
  one: {
    name: 'John'
  },
  two: {
    surname: 'Smith'
  }
});

var watcher = tree.watch({
  name: ['one', 'name'],
  surname: ['two', 'surname']
});

watcher.on('update', function(e) {
  // One of the watched paths was updated!
});

watcher.get();
>>> {
  name: 'John',
  surname: 'Smith'
}

tree/cursor.project

Retrieve data from several parts of the tree by following the given projection:

// Considering the following tree
var tree = new Baobab({
  one: {
    name: 'John'
  },
  two: {
    surname: 'Smith'
  }
});

// Using an object projection
tree.project({
  name: ['one', 'name'],
  surname: ['two', 'surname']
});
>>> {name: 'John', surname: 'Smith'}

// Using an array projection
tree.project([
  ['one', 'name'],
  ['two', 'surname']
]);
>>> ['John', 'Smith']
Traversal

Getting root cursor

var tree = new Baobab({first: {second: 'yeah'}}),
    cursor = tree.select('first');

var rootCursor = tree.root;
// or
var rootCursor = cursor.root();

Going up in the tree

var tree = new Baobab({first: {second: 'yeah'}})
    secondCursor = tree.select('first', 'second');

var firstCursor = secondCursor.up();

Going left/right/down in lists

var tree = new Baobab({
  list: [[1, 2], [3, 4]],
  longList: ['one', 'two', 'three', 'four']
});

var listCursor = tree.select('list'),
    twoCursor = tree.select('longList', 1);

listCursor.down().right().get();
>>> [3, 4]

listCursor.select(1).down().right().get();
>>> 4

listCursor.select(1).down().right().left().get();
>>> 3

twoCursor.leftmost().get();
>>> 'one'

twoCursor.rightmost().get();
>>> 'four'

Mapping cursors over a list node

var tree = new Baobab({list: [1, 2, 3]});

tree.select('list').map(function(cursor, i) {
  console.log(cursor.get());
});
>>> 1
>>> 2
>>> 3

Getting information about the cursor's location in the tree

cursor.isRoot();
cursor.isBranch();
cursor.isLeaf();
Options

You can pass those options at instantiation.

var baobab = new Baobab(

  // Initial data
  {
    palette: {
      name: 'fancy',
      colors: ['blue', 'green']
    }
  },

  // Options
  {
    autoCommit: false
  }
)
  • autoCommit boolean [true]: should the tree auto commit updates or should it let the user do so through the commit method?
  • asynchronous boolean [true]: should the tree delay the update to the next frame or fire them synchronously?
  • immutable boolean [true]: should the tree's data be immutable? Note that immutability is performed through Object.freeze and should be disabled in production for performance reasons.
  • lazyMonkeys boolean [true]: should the monkeys be lazy? Disable this option for easier debugging in your console (getter functions are sometimes hard to read in the console).
  • persistent boolean [true]: should the tree be persistent. Know that disabling this option, while bringing a significant performance boost on heavy data, will make you lose the benefits of your tree's history and O(1) comparisons of objects.
  • pure boolean [true]: by default, on set and apply operations, the tree will check if the given value and the target node are stricly equal. If they indeed are, the tree won't update.
  • validate function: a function in charge of validating the tree whenever it updates. See below for an example of such function.
  • validationBehavior string [rollback]: validation behavior of the tree. If rollback, the tree won't apply the current update and fire an invalid event while notify will only emit the event and let the tree enter the invalid state anyway.

Validation function

function validationFunction(previousState, newState, affectedPaths) {
  // Perform validation here and return an error if
  // the tree is invalid
  if (!valid)
    return new Error('Invalid tree because of reasons.');
}

var tree = new Baobab({...}, {validate: validationFunction});
History

Baobab lets you record the successive states of any cursor so you can seamlessly implement undo/redo features.

Example

// Synchronous tree so that examples are simpler
var baobab = new Baobab({colors: ['blue']}, {asynchronous: false}),
    cursor = baobab.select('colors');

// Starting to record state, with 10 records maximum
cursor.startRecording(10);

cursor.push('yellow');
cursor.push('purple');
cursor.push('orange');

cursor.get();
>>> ['blue', 'yellow', 'purple', 'orange']

cursor.undo();
cursor.get();
>>> ['blue', 'yellow', 'purple']

cursor.undo(2);
cursor.get();
>>> ['blue']

Starting recording

If you do not provide a maximum number of records, will record everything without any limit.

cursor.startRecording(maxNbOfRecords);

Stoping recording

cursor.stopRecording();

Undoing

cursor.undo();
cursor.undo(nbOfSteps);

Clearing history

cursor.clearHistory();

Checking if the cursor has an history

cursor.hasHistory();

Retrieving the cursor's history

cursor.getHistory();
Common pitfalls

Releasing

In most complex use cases, you might need to release the manipulated objects, i.e. kill their event emitters and wipe their associated data.

Thus, any tree or cursor object can be cleared from memory by using the release method.

tree.release();
cursor.release();

Note also that releasing a tree will consequently and automatically release every of its cursors and computed data nodes.

Philosophy

User interfaces as pure functions

User interfacess should be, as far as possible, considered as pure functions. Baobab is just a way to provide the needed arguments, i.e. the data representing your app's state, to such a function.

Considering your UIs like pure functions comes along with collateral advantages like easy undo/redo features, state storing (just save your tree in the localStorage and here you go) and easy usage in both client & server.

Only data should enter the tree

You shouldn't try to shove anything else than raw data into the tree. The tree hasn't been conceived to hold classes or fancy indexes with many circular references and cannot perform its magic on it. But, probably such magic is not desirable for those kind of abstractions anyway.

That is to say the data you insert into the tree should logically be JSON-serializable else you might be missing the point.

Migration

From v1 to v2

  • The tree is now immutable by default (but you can shunt this behavior through a dedicated option).
  • Writing to the tree is now synchronous for convenience. Updates remain asynchronous for obvious performance reasons.
  • You cannot chain update methods now since those will return the affected node's data to better tackle immutability.
  • The strange concat-like behavior of the push and unshift method was dropped in favor of the concat method.
  • Facets are now full-fledged dynamic nodes called monkeys.
  • The weird $cursor sugar has been dropped.
  • The update specifications have been dropped.

From v0.4.x to v1

A lot of changes occurred between 0.4.x and 1.0.0. Most notable changes being the following ones:

  • The tree now shift references by default.
  • React integration has improved and is now handled by baobab-react.
  • cursor.edit and cursor.remove have been replaced by cursor.set and cursor.unset single argument polymorphisms.
  • A lot of options (now unnecessary) have been dropped.
  • Validation is no longer handled by typology so you can choose you own validation system and so the library can remain lighter.
  • Some new features such as: $splice, facets and so on...

For more information, see the changelog.

Contribution

See CONTRIBUTING.md.

License

MIT

Keywords

FAQs

Package last updated on 14 Dec 2015

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc