Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

heap-typed

Package Overview
Dependencies
Maintainers
0
Versions
169
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

heap-typed

Heap. Javascript & Typescript Data Structure.

  • 1.53.5
  • Source
  • npm
  • Socket score

Version published
Weekly downloads
1.5K
increased by325.51%
Maintainers
0
Weekly downloads
 
Created
Source

NPM GitHub top language npm eslint npm bundle size npm bundle size npm

What

Brief

This is a standalone Heap data structure from the data-structure-typed collection. If you wish to access more data structures or advanced features, you can transition to directly installing the complete data-structure-typed package

How

install

npm

npm i heap-typed --save

yarn

yarn add heap-typed

methods

Min Heap Max Heap

snippet

heap sort TS
    import {Heap, MaxHeap, MinHeap} from 'data-structure-typed';

// /* or if you prefer */ import {MinHeap, MaxHeap} from 'heap-typed';

// Use Heap to sort an array
function heapSort(arr: number[]): number[] {
    const heap = new Heap<number>(arr, {comparator: (a, b) => a - b});
    const sorted: number[] = [];
    while (!heap.isEmpty()) {
        sorted.push(heap.poll()!); // Poll minimum element
    }
    return sorted;
}

console.log('Heap sorted:', heapSort([5, 3, 8, 4, 1, 2]));  // [1, 2, 3, 4, 5, 8];

top K problem TS
// Use Heap to resolve top K problem
function topKElements(arr: number[], k: number): number[] {
    const heap = new Heap<number>([], {comparator: (a, b) => b - a}); // Max heap
    arr.forEach((num) => {
        heap.add(num);
        if (heap.size > k) heap.poll(); // Keep the heap size at K
    });
    return heap.toArray();
}

const numbers = [10, 30, 20, 5, 15, 25];
console.log('Top K:', topKElements(numbers, 3)); // [15, 10, 5]
real-time median TS
// Use Heap to maintain median value for real-time retrieval
class MedianFinder {
    private low: MaxHeap<number>; // Max heap, stores the smaller half
    private high: MinHeap<number>; // Min heap, stores the larger half

    constructor() {
        this.low = new MaxHeap<number>([]);
        this.high = new MinHeap<number>([]);
    }

    addNum(num: number): void {
        if (this.low.isEmpty() || num <= this.low.peek()!) this.low.add(num);
        else this.high.add(num);

        // Balance heaps
        if (this.low.size > this.high.size + 1) this.high.add(this.low.poll()!);
        else if (this.high.size > this.low.size) this.low.add(this.high.poll()!);
    }

    findMedian(): number {
        return this.low.peek()!;
    }
}

const medianFinder = new MedianFinder();
medianFinder.addNum(10);
console.log('realtime median: ', medianFinder.findMedian()) // 10
medianFinder.addNum(20);
console.log('realtime median: ', medianFinder.findMedian()) // 10
medianFinder.addNum(30);
console.log('realtime median: ', medianFinder.findMedian()) // 20
medianFinder.addNum(40);
console.log('realtime median: ', medianFinder.findMedian()) // 20
medianFinder.addNum(50);
console.log('realtime median: ', medianFinder.findMedian()) // 30
load balance TS
// Use Heap for load balancing
function loadBalance(requests: number[], servers: number): number[] {
    const serverHeap = new Heap<{ id: number; load: number }>([], { comparator: (a, b) => a.load - b.load }); // min heap
    const serverLoads = new Array(servers).fill(0);

    for (let i = 0; i < servers; i++) {
        serverHeap.add({ id: i, load: 0 });
    }

    requests.forEach(req => {
        const server = serverHeap.poll()!;
        serverLoads[server.id] += req;
        server.load += req;
        serverHeap.add(server); // The server after updating the load is re-entered into the heap
    });

    return serverLoads;
}

const requests = [5, 2, 8, 3, 7];
const serversLoads = loadBalance(requests, 3);
console.log('server loads: ', serversLoads);  // [12, 8, 5]
conventional operation TS
const minNumHeap = new MinHeap<number>([1, 6, 2, 0, 5]);
minNumHeap.add(9);
minNumHeap.has(1)        //  true
minNumHeap.has(2)        //  true
minNumHeap.poll()        //  0
minNumHeap.poll()        //  1
minNumHeap.peek()        //  2
minNumHeap.has(1);       // false
minNumHeap.has(2);       // true

const arrFromHeap = minNumHeap.toArray();
arrFromHeap.length       //  4
arrFromHeap[0]           //  2
arrFromHeap[1]           //  5
arrFromHeap[2]           //  9
arrFromHeap[3]           //  6
minNumHeap.sort()        //  [2, 5, 6, 9]

const maxHeap = new MaxHeap<{ keyA: string }>([], {comparator: (a, b) => b.keyA - a.keyA});
const obj1 = {keyA: 'a1'}, obj6 = {keyA: 'a6'}, obj5 = {keyA: 'a5'}, obj2 = {keyA: 'a2'},
    obj0 = {keyA: 'a0'}, obj9 = {keyA: 'a9'};

maxHeap.add(obj1);
maxHeap.has(obj1)                       // true
maxHeap.has(obj9)                       // false
maxHeap.add(obj6);
maxHeap.has(obj6)                       // true
maxHeap.add(obj5);
maxHeap.add(obj2);
maxHeap.add(obj0);
maxHeap.add(obj9);
maxHeap.has(obj9)                       // true

const peek9 = maxHeap.peek();
console.log(peek9.keyA)                 // 'a9'

const heapToArr = maxHeap.toArray();
console.log(heapToArr.map(ele => ele?.keyA));  // ['a9', 'a2', 'a6', 'a1', 'a0', 'a5']

const values = ['a9', 'a6', 'a5', 'a2', 'a1', 'a0'];
let i = 0;
while (maxHeap.size > 0) {
    const polled = maxHeap.poll();
    console.log(polled.keyA)           // values[i]
    i++;
}
conventional operation JS
const {MinHeap, MaxHeap} = require('data-structure-typed');
// /* or if you prefer */ const {MinHeap, MaxHeap} = require('heap-typed');

const minNumHeap = new MinHeap([1, 6, 2, 0, 5]);
minNumHeap.add(9);
minNumHeap.has(1)        //  true
minNumHeap.has(2)        //  true
minNumHeap.poll()        //  0
minNumHeap.poll()        //  1
minNumHeap.peek()        //  2
minNumHeap.has(1);       // false
minNumHeap.has(2);       // true

const arrFromHeap = minNumHeap.toArray();
arrFromHeap.length       //  4
arrFromHeap[0]           //  2
arrFromHeap[1]           //  5
arrFromHeap[2]           //  9
arrFromHeap[3]           //  6
minNumHeap.sort()        //  [2, 5, 6, 9]

const maxHeap = new MaxHeap([], {comparator: (a, b) => b.keyA - a.keyA});
const obj1 = {keyA: 'a1'}, obj6 = {keyA: 'a6'}, obj5 = {keyA: 'a5'}, obj2 = {keyA: 'a2'},
    obj0 = {keyA: 'a0'}, obj9 = {keyA: 'a9'};

maxHeap.add(obj1);
maxHeap.has(obj1)                       // true
maxHeap.has(obj9)                       // false
maxHeap.add(obj6);
maxHeap.has(obj6)                       // true
maxHeap.add(obj5);
maxHeap.add(obj2);
maxHeap.add(obj0);
maxHeap.add(obj9);
maxHeap.has(obj9)                       // true

const peek9 = maxHeap.peek();
console.log(peek9.keyA)             // 'a9'

const heapToArr = maxHeap.toArray();
console.log(heapToArr.map(ele => ele?.keyA));  // ['a9', 'a2', 'a6', 'a1', 'a0', 'a5']

const values = ['a9', 'a6', 'a5', 'a2', 'a1', 'a0'];
let i = 0;
while (maxHeap.size > 0) {
    const polled = maxHeap.poll();
    console.log(polled.keyA)           // values[i]
    i++;
}

API docs & Examples

API Docs

Live Examples

Examples Repository

Data Structures

Data StructureUnit TestPerformance TestAPI Docs
HeapHeap

Standard library data structure comparison

Data Structure TypedC++ STLjava.utilPython collections
Heap<E>priority_queue<T>PriorityQueue<E>heapq

Benchmark

heap
test nametime taken (ms)executions per secsample deviation
10,000 add & pop5.80172.358.78e-5
10,000 fib add & pop357.922.790.00

Built-in classic algorithms

AlgorithmFunction DescriptionIteration Type

Software Engineering Design Standards

PrincipleDescription
PracticalityFollows ES6 and ESNext standards, offering unified and considerate optional parameters, and simplifies method names.
ExtensibilityAdheres to OOP (Object-Oriented Programming) principles, allowing inheritance for all data structures.
ModularizationIncludes data structure modularization and independent NPM packages.
EfficiencyAll methods provide time and space complexity, comparable to native JS performance.
MaintainabilityFollows open-source community development standards, complete documentation, continuous integration, and adheres to TDD (Test-Driven Development) patterns.
TestabilityAutomated and customized unit testing, performance testing, and integration testing.
PortabilityPlans for porting to Java, Python, and C++, currently achieved to 80%.
ReusabilityFully decoupled, minimized side effects, and adheres to OOP.
SecurityCarefully designed security for member variables and methods. Read-write separation. Data structure software does not need to consider other security aspects.
ScalabilityData structure software does not involve load issues.

Keywords

FAQs

Package last updated on 20 Nov 2024

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc