Table of contents
Introduction
Koffi is a fast and easy-to-use FFI module for Node.js, with support for complex data types such as structs.
The following platforms are officially supported and tested at the moment:
- Windows x86 (cdecl, stdcall, fastcall)
- Windows x86_64
- Linux x86
- Linux x86_64
- Linux ARM32+VFP Little Endian
- Linux ARM64 Little Endian
- FreeBSD x86
- FreeBSD x86_64
- FreeBSD ARM64 Little Endian
- macOS x86_64
The following platforms will soon be officially supported, when I can get my hand on a machine...:
The following platforms may be supported but are not tested:
- Linux ARM32 (full software FP) Little Endian
- NetBSD x86_64
- NetBSD ARM64
- OpenBSD x86_64
- OpenBSD ARM64
This is still in development, bugs are to expected. More tests will come in the near future.
Benchmarks
In order to run it, go to koffi/benchmark
and run ../../cnoke/cnoke.js
(or node ..\..\cnoke\cnoke.js
on Windows) before doing anything else.
Once this is done, you can execute each implementation, e.g. build/atoi_cc
or ./atoi_koffi.js
. You can optionally define a custom number of iterations, e.g. ./atoi_koffi.js 10000000
.
atoi results
This test is based around repeated calls to a simple standard C function atoi, and has three implementations:
- the first one is the reference, it calls atoi through an N-API module, and is close to the theoretical limit of a perfect (no overhead) Node.js > C FFI implementation.
- the second one calls atoi through Koffi
- the third one uses the official Node.js FFI implementation, node-ffi-napi
Because atoi is a small call, the FFI overhead is clearly visible.
Linux
The results below were measured on my x86_64 Linux machine (AMD® Ryzen™ 7 5800H 16G):
Benchmark | Iterations | Total time | Overhead |
---|
atoi_napi | 20000000 | 1.10s | (baseline) |
atoi_koffi | 20000000 | 1.91s | x1.73 |
atoi_node_ffi | 20000000 | 640.49s | x582 |
Windows
The results below were measured on my x86_64 Windows machine (AMD® Ryzen™ 7 5800H 16G):
Benchmark | Iterations | Total time | Overhead |
---|
atoi_napi | 20000000 | 1.94s | (baseline) |
atoi_koffi | 20000000 | 3.15s | x1.62 |
atoi_node_ffi | 20000000 | 640.49s | x242 |
Raylib results
This benchmark uses the CPU-based image drawing functions in Raylib. The calls are much heavier than in the atoi benchmark, thus the FFI overhead is reduced. In this implemenetation, the baseline is a full C++ version of the code.
Linux
The results below were measured on my x86_64 Linux machine (AMD® Ryzen™ 7 5800H 16G):
Benchmark | Iterations | Total time | Overhead |
---|
raylib_cc | 100 | 4.14s | (baseline) |
raylib_koffi | 100 | 6.25s | x1.51 |
raylib_node_ffi | 100 | 27.13s | x6.55 |
Windows
The results below were measured on my x86_64 Windows machine (AMD® Ryzen™ 7 5800H 16G):
Benchmark | Iterations | Total time | Overhead |
---|
raylib_cc | 100 | 8.39s | (baseline) |
raylib_koffi | 100 | 11.51s | x1.37 |
raylib_node_ffi | 100 | 31.47s | x3.8 |
Installation
Windows
First, make sure the following dependencies are met:
Once this is done, run this command from the project root:
npm install koffi
Other platforms
Make sure the following dependencies are met:
Once these dependencies are met, simply run the follow command:
npm install koffi
Get started
This section assumes you know how to build C shared libraries.
Raylib example
This examples illustrates how to use Koffi with a Raylib shared library:
const koffi = require('koffi');
const Color = koffi.struct('Color', {
r: 'uchar',
g: 'uchar',
b: 'uchar',
a: 'uchar'
});
const Image = koffi.struct('Image', {
data: koffi.pointer('void'),
width: 'int',
height: 'int',
mipmaps: 'int',
format: 'int'
});
const GlyphInfo = koffi.struct('GlyphInfo', {
value: 'int',
offsetX: 'int',
offsetY: 'int',
advanceX: 'int',
image: Image
});
const Vector2 = koffi.struct('Vector2', {
x: 'float',
y: 'float'
});
const Rectangle = koffi.struct('Rectangle', {
x: 'float',
y: 'float',
width: 'float',
height: 'float'
});
const Texture = koffi.struct('Texture', {
id: 'uint',
width: 'int',
height: 'int',
mipmaps: 'int',
format: 'int'
});
const Font = koffi.struct('Font', {
baseSize: 'int',
glyphCount: 'int',
glyphPadding: 'int',
texture: Texture,
recs: koffi.pointer(Rectangle),
glyphs: koffi.pointer(GlyphInfo)
});
let lib = koffi.load('build/raylib' + koffi.extension);
const InitWindow = lib.func('InitWindow', 'void', ['int', 'int', 'string']);
const SetTargetFPS = lib.func('SetTargetFPS', 'void', ['int']);
const GetScreenWidth = lib.func('GetScreenWidth', 'int', []);
const GetScreenHeight = lib.func('GetScreenHeight', 'int', []);
const ClearBackground = lib.func('ClearBackground', 'void', [Color]);
const BeginDrawing = lib.func('void BeginDrawing()');
const EndDrawing = lib.func('void EndDrawing()');
const WindowShouldClose = lib.func('void WindowShouldClose(bool)');
const GetFontDefault = lib.func('Font GetFontDefault()');
const MeasureTextEx = lib.func('Vector2 MeasureTextEx(Font, const char *, float, float)');
const DrawTextEx = lib.func('void DrawTextEx(Font font, const char *text, Vector2 pos, float size, float spacing, Color tint)');
InitWindow(800, 600, 'Test Raylib');
SetTargetFPS(60);
let angle = 0;
while (!WindowShouldClose()) {
BeginDrawing();
ClearBackground({ r: 0, g: 0, b: 0, a: 255 });
let win_width = GetScreenWidth();
let win_height = GetScreenHeight();
let text = 'Hello World!';
let text_width = MeasureTextEx(GetFontDefault(), text, 32, 1).x;
let color = {
r: 127.5 + 127.5 * Math.sin(angle),
g: 127.5 + 127.5 * Math.sin(angle + Math.PI / 2),
b: 127.5 + 127.5 * Math.sin(angle + Math.PI),
a: 255
};
let pos = {
x: (win_width / 2 - text_width / 2) + 120 * Math.cos(angle - Math.PI / 2),
y: (win_height / 2 - 16) + 120 * Math.sin(angle - Math.PI / 2)
};
DrawTextEx(GetFontDefault(), text, pos, 32, 1, color);
EndDrawing();
angle += Math.PI / 180;
}
Win32 stdcall example
const koffi = require('koffi');
let lib = koffi.load('user32.dll');
const MessageBoxA = lib.stdcall('MessageBoxA', 'int', ['void *', 'string', 'string', 'uint']);
const MB_ICONINFORMATION = 0x40;
MessageBoxA(null, 'Hello', 'Foobar', MB_ICONINFORMATION);
Tests
Koffi is tested on multiple architectures using emulated (accelerated when possible) QEMU machines. First, you need to install qemu packages, such as qemu-system
(or even qemu-system-gui
) on Ubuntu.
These machines are not included directly in this repository (for license and size reasons), but they are available here: https://koromix.dev/files/machines/
For example, if you want to run the tests on Debian ARM64, run the following commands:
cd luigi/koffi/qemu/
wget -q -O- https://koromix.dev/files/machines/emu_debian_arm64.tar.zst | zstd -d | tar xv
sha256sum -c --ignore-missing registry/sha256sum.txt
Note that the machine disk content may change each time the machine runs, so the checksum test will fail once a machine has been used at least once.
And now you can run the tests with:
node qemu.js
And be patient, this can be pretty slow for emulated machines. The Linux machines have and use ccache to build Koffi, so subsequent build steps will get much more tolerable.
By default, machines are started and stopped for each test. But you can start the machines ahead of time and run the tests multiple times instead:
node qemu.js start
node qemu.js
node qemu.js
node qemu.js stop
You can also restrict the test to a subset of machines:
node qemu.js test debian_x64 debian_i386
node qemu.js start debian_x64 debian_i386
node qemu.js test debian_x64 debian_i386
node qemu.js stop
Finally, you can join a running machine with SSH with the following shortcut, if you need to do some debugging or any other manual procedure:
node qemu.js ssh debian_i386
Each machine is configured to run a VNC server available locally, which you can use to access the display, using KRDC or any other compatible viewer. Use the info
command to get the VNC port.
node qemu.js info debian_x64