Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

lifecycle-utils

Package Overview
Dependencies
Maintainers
0
Versions
16
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

lifecycle-utils

A set of general utilities for the lifecycle of a JS/TS project/library

  • 1.7.0
  • latest
  • Source
  • npm
  • Socket score

Version published
Weekly downloads
3.4K
increased by109.91%
Maintainers
0
Weekly downloads
 
Created
Source

lifecycle-utils

A set of general utilities for the lifecycle of a JS/TS project/library

Build License Types Version codecov

Installation

npm install --save lifecycle-utils

This is an ESM package, so you can only use import to import it, and cannot use require

Documentation

withLock

Calling withLock with the same scope and key will ensure that the callback inside cannot run in parallel to other calls with the same scope and key.

import {withLock} from "lifecycle-utils";

const scope = {}; // can be a reference to any object you like
const startTime = Date.now();

async function doSomething(index: number): number {
    return await withLock(scope, "myKey", async () => {
        await new Promise(resolve => setTimeout(resolve, 1000));
        console.log("index:", index, "time:", Date.now() - startTime);
        return 42;
    });
}

const res = await Promise.all([
    doSomething(1),
    doSomething(2),
    doSomething(3)
]);

// index: 1 time: 1000
// index: 2 time: 2000
// index: 3 time: 3000

console.log(res); // [42, 42, 42]

The given scope is used as the callback's this, so you can use its value in a function:

import {withLock} from "lifecycle-utils";

const scope = {userName: "Joe"}; // can be a reference to any object you like

const res = await withLock(scope, "myKey", async function () {
    await new Promise(resolve => setTimeout(resolve, 1000));
    return `Hello ${this.userName}`;
});

console.log(res); // Hello Joe

isLockActive

Check whether a lock is currently active for the given scope and key.

import {isLockActive} from "lifecycle-utils";

const scope = {}; // can be a reference to any object you like

const res = isLockActive(scope, "myKey");
console.log(res); // false

acquireLock

Acquire a lock for the given scope and key.

import {acquireLock} from "lifecycle-utils";

const scope = {}; // can be a reference to any object you like

const activeLock = await acquireLock(scope, "myKey");
console.log("lock acquired");

// ... do some work

activeLock.dispose();

waitForLockRelease

Wait for a lock to be released for a given scope and key.

import {waitForLockRelease} from "lifecycle-utils";

const scope = {}; // can be a reference to any object you like

await waitForLockRelease(scope, "myKey");
console.log("lock is released");

EventRelay

A simple event relay.

Create a listener with createListener and dispatch events with dispatchEvent.

For each supported event type, create a new instance of EventRelay and expose it as a property.

For example, this code:

import {EventRelay} from "lifecycle-utils";

class MyClass {
    public readonly onSomethingHappened = new EventRelay<string>();

    public doSomething(whatToDo: string) {
        this.onSomethingHappened.dispatchEvent(whatToDo);
        console.log("Done notifying listeners");
    }
}

const myClass = new MyClass();
myClass.onSomethingHappened.createListener((whatHappened) => {
    console.log(`Something happened: ${whatHappened}`);
});
myClass.doSomething("eat a cookie");

Will print this:

Something happened: eat a cookie
Done notifying listeners

DisposeAggregator

DisposeAggregator is a utility class that allows you to add multiple items and then dispose them all at once.

You can add a function to call, an object with a dispose method, or an object with a Symbol.dispose method.

To dispose all the items, call dispose or use the Symbol.dispose symbol.

import {DisposeAggregator, EventRelay} from "lifecycle-utils";

const disposeAggregator = new DisposeAggregator();

const eventRelay = new EventRelay<string>();
disposeAggregator.add(eventRelay);

const eventRelay2 = disposeAggregator.add(new EventRelay<string>());

disposeAggregator.dispose();
console.log(eventRelay.disposed === true); // true
console.log(eventRelay2.disposed === true); // true

AsyncDisposeAggregator

AsyncDisposeAggregator is a utility class that allows you to add multiple items and then dispose them all at once. The items are disposed one by one in the order they were added.

You can add a function to call, an object with a dispose method, an object with a Symbol.dispose method, an object with a Symbol.asyncDispose method, or a Promise that resolves to one of the previous types.

To dispose all the items, call dispose or use the Symbol.asyncDispose symbol.

The difference between AsyncDisposeAggregator and DisposeAggregator is that AsyncDisposeAggregator can dispose async targets.

import {AsyncDisposeAggregator, EventRelay} from "lifecycle-utils";

const disposeAggregator = new AsyncDisposeAggregator();

const eventRelay = new EventRelay<string>();
disposeAggregator.add(eventRelay);

disposeAggregator.add(async () => {
    await new Promise(resolve => setTimeout(resolve, 0));
    // do some async work
});

disposeAggregator.dispose();

DisposableHandle

An object that provides a .dispose() method that can called only once.

Calling .dispose() will call the provided onDispose function only once. Any subsequent calls to .dispose() will do nothing.

import {DisposableHandle} from "lifecycle-utils";

function createHandle() {
    console.log("allocating resources");
    
    return new DisposableHandle(() => {
        console.log("resources disposed");
    });
}

const handle = createHandle();
handle.dispose();

Using the using feature of TypeScript is also supported:

import {DisposableHandle} from "lifecycle-utils";

function createHandle() {
    console.log("allocating resources");
    
    return new DisposableHandle(() => {
        console.log("resources disposed");
    });
}

function doWork() {
    using handle = createHandle();
}

doWork();
// resources disposed
// the dispose function was called since the scope of the `doWork` function ended

AsyncDisposableHandle

An object that provides an async .dispose() method that can called only once.

Calling .dispose() will call the provided onDispose function only once. Any subsequent calls to .dispose() will do nothing.

import {AsyncDisposableHandle} from "lifecycle-utils";

function createHandle() {
    console.log("allocating resources");
    
    return new AsyncDisposableHandle(async () => {
        await new Promise(resolve => setTimeout(resolve, 1000));
        console.log("resources disposed");
    });
}

const handle = createHandle();
await handle.dispose();

Using the await using feature of TypeScript is also supported:

import {AsyncDisposableHandle} from "lifecycle-utils";

function createHandle() {
    console.log("allocating resources");

    return new AsyncDisposableHandle(async () => {
        await new Promise(resolve => setTimeout(resolve, 1000));
        console.log("resources disposed");
    });
}

async function doWork() {
    await using handle = createHandle();
}

await doWork();
// resources disposed
// the dispose function was called since the scope of the `doWork` function ended

MultiKeyMap

MultiKeyMap is a utility class that works like a Map, but accepts multiple values as the key for each value.

.set(...), .get(...), .has(...), .delete(...) are in time complexity of O(1), given that the length of the keys is constant.

import {MultiKeyMap} from "lifecycle-utils";

type Provider = {name: string};
const provider1: Provider = {name: "1"};
const provider2: Provider = {name: "2"};

const map = new MultiKeyMap<[provider: Provider, name: string], number>();

map.set([provider1, "key1"], 1);
map.set([provider2, "key1"], 2);
map.set([provider1, "key2"], 3);

console.log(map.get([provider1, "key1"])); // 1
console.log(map.get([provider2, "key1"])); // 2
console.log(map.get([provider1, "key2"])); // 3

console.log([...map.keys()]); // [[{name: "1"}, "key1"], [{name: "2"}, "key1"], [{name: "1"}, "key2"]])

LongTimeout

A timeout that can be set to a delay longer than the maximum timeout delay supported by a regular setTimeout.

import {LongTimeout} from "lifecycle-utils";

const month = 1000 * 60 * 60 * 24 * 7 * 30;

const timeout = new LongTimeout(() => {
    console.log("timeout");
}, month);

// to clear the timeout, call dispose
// timeout.dispose();

setLongTimeout

Sets a timeout that can also be set to a delay longer than the maximum timeout delay supported by a regular setTimeout.

You can use clearLongTimeout to clear the timeout.

import {setLongTimeout, clearLongTimeout} from "lifecycle-utils";

const month = 1000 * 60 * 60 * 24 * 7 * 30;

const timeout = setLongTimeout(() => {
    console.log("timeout");
}, month);

// to clear the timeout, call clearLongTimeout
// clearLongTimeout(timeout);

clearLongTimeout

Clears a timeout that was set with setLongTimeout.

You can also clear a regular timeout with this function.

import {setLongTimeout, clearLongTimeout} from "lifecycle-utils";

const month = 1000 * 60 * 60 * 24 * 7 * 30;

const timeout = setLongTimeout(() => {
    console.log("timeout");
}, month);
const timeout2 = setTimeout(() => {
    console.log("timeout2");
}, 1000 * 60);

clearLongTimeout(timeout);
clearLongTimeout(timeout2);

State

State is a utility class that allows you to hold a value and notify listeners when the value changes.

import {State} from "lifecycle-utils";

const valueState = new State<number>(6);

const eventHandle = valueState.createChangeListener((newValue, previousValue) => {
    console.log("new value:", newValue);
    console.log("previous value:", previousValue);
});

valueState.state = 7;

// after a microtask, the listener will be called
// to make event fire immediately upon change, disable the `queueEvents` option on the constructor
await new Promise(resolve => setTimeout(resolve, 0));
// will print:
// new value: 7
// previous value: 6

eventHandle.dispose();

State.createCombinedChangeListener

Create a listener that listens to multiple states and calls the callback when any of the states change.

import {State} from "lifecycle-utils";

const valueState1 = new State<number>(6);
const valueState2 = new State<string>("hello");
const valueState3 = new State<boolean>(true);

const eventHandle = State.createCombinedChangeListener([valueState1, valueState2, valueState3], (newValues, previousValues) => {
    console.log("new values:", newValues);
    console.log("previous values:", previousValues);
});

valueState1.state = 7;
valueState2.state = "world";
valueState3.state = false;

// after a microtask, the listener will be called
// to make event fire immediately upon change, disable the `queueEvents` option on the constructor
await new Promise(resolve => setTimeout(resolve, 0));
// will print:
// new values: [7, "world", false]
// previous values: [6, "hello", true]

eventHandle.dispose();

splitText

Split a text by multiple separators, and return a result of the text and separators.

const parts = splitText("Hello <and> world [then] !", ["<and>", "[then]"]);
console.log(parts); // ["Hello ", new Separator("<and>"), " world ", new Separator("[then]"), " !"]

Contributing

To contribute to lifecycle-utils see CONTRIBUTING.md.


Star please

If you like this repo, star it ✨                                                    

Keywords

FAQs

Package last updated on 17 Sep 2024

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc