Research
Security News
Quasar RAT Disguised as an npm Package for Detecting Vulnerabilities in Ethereum Smart Contracts
Socket researchers uncover a malicious npm package posing as a tool for detecting vulnerabilities in Etherium smart contracts.
mercurius-cache
Advanced tools
Adds an in-process caching layer to Mercurius. Federation is fully supported.
Based on preliminary testing, it is possible to achieve a significant throughput improvement at the expense of the freshness of the data. Setting the ttl accordingly and/or a good invalidation strategy is of critical importance.
Under the covers, it uses async-cache-dedupe
which will also deduplicate the calls.
npm i fastify mercurius mercurius-cache graphql
'use strict'
const fastify = require('fastify')
const mercurius = require('mercurius')
const cache = require('mercurius-cache')
const app = fastify({ logger: true })
const schema = `
type Query {
add(x: Int, y: Int): Int
hello: String
}
`
const resolvers = {
Query: {
async add (_, { x, y }, { reply }) {
reply.log.info('add called')
for (let i = 0; i < 10000000; i++) {} // something that takes time
return x + y
}
}
}
app.register(mercurius, {
schema,
resolvers
})
// cache query "add" responses for 10 seconds
app.register(cache, {
ttl: 10,
policy: {
Query: {
add: true
// note: it cache "add" but it doesn't cache "hello"
}
}
})
app.listen(3000)
// Use the following to test
// curl -X POST -H 'content-type: application/json' -d '{ "query": "{ add(x: 2, y: 2) }" }' localhost:3000/graphql
the time to live in seconds; default is 0
, which means that the cache is disabled.
Example
ttl: 10
use the cache in all resolvers; default is false. Use either policy
or all
but not both.
Example
all: true
default cache is in memory
, but a redis
storage can be used for a larger and shared cache.
Storage options are:
memory
(default) or redis
for memory
1024
.pino
compatible, default is the app.log
instance.Example
storage: {
type: 'memory',
options: {
size: 2048
}
}
for redis
ioredis
client or compatible.ttl
between the main one and policies.pino
compatible, default is the app.log
instance.Example
storage: {
type: 'redis',
options: {
client: new Redis(),
invalidation: {
referencesTTL: 60
}
}
}
See https://github.com/mercurius-js/mercurius-cache-example for a complete complex use case.
specify queries to cache; default is empty.
Set it to true
to cache using main ttl
.
Example
policy: {
Query: {
add: true
}
}
use a specific ttl
for the policy, instead of the main one.
Example
ttl: 10,
policy: {
Query: {
welcome: {
ttl: 5 // Query "welcome" will be cached for 5 seconds
},
bye: true // Query "bye" will be cached for 10 seconds
}
}
use specific storage for the policy, instead of the main one.
Can be useful to have, for example, in-memory storage for small data set along with the redis storage.
See https://github.com/mercurius-js/mercurius-cache-example for a complete complex use case.
Example
storage: {
type: 'redis',
options: { client: new Redis() }
},
policy: {
Query: {
countries: {
ttl: 1440, // Query "countries" will be cached for 1 day
storage: { type: 'memory' }
}
}
}
skip cache use for a specific condition, onSkip
will be triggered.
Example
skip (self, arg, ctx, info) {
if (ctx.reply.request.headers.authorization) {
return true
}
return false
}
To improve performance, we can define a custom key serializer. Example
const schema = `
type Query {
getUser (id: ID!): User
}`
// ...
policy: {
Query: {
getUser: { key ({ self, arg, info, ctx, fields }) { return `${arg.id}` } }
}
}
Please note that the key
function must return a string, otherwise the result will be stringified, losing the performance advantage of custom serialization.
extend the key to cache responses by different requests, for example, to enable custom cache per user.
See examples/cache-per-user.js.
Example
policy: {
Query: {
welcome: {
extendKey: function (source, args, context, info) {
return context.userId ? `user:${context.userId}` : undefined
}
}
}
}
function to set the references
for the query, see invalidation to know how to use references, and https://github.com/mercurius-js/mercurius-cache-example for a complete use case.
Example
policy: {
Query: {
user: {
references: ({source, args, context, info}, key, result) => {
if(!result) { return }
return [`user:${result.id}`]
}
},
users: {
references: ({source, args, context, info}, key, result) => {
if(!result) { return }
const references = result.map(user => (`user:${user.id}`))
references.push('users')
return references
}
}
}
}
function to invalidate
for the query by references, see invalidation to know how to use references, and https://github.com/mercurius-js/mercurius-cache-example for a complete use case.
invalidate
function can be sync or async.
Example
policy: {
Mutation: {
addUser: {
invalidate: (self, arg, ctx, info, result) => ['users']
}
}
}
should be used in case of conflicts with nested fields with the same name as policy fields (ttl, skip, storage....).
Example
policy: {
Query: {
welcome: {
// no __options key present, so policy options are considered as it is
ttl: 6
},
hello: {
// since "hello" query has a ttl property
__options: {
ttl: 6
},
ttl: {
// here we can use both __options or list policy options
skip: () { /* .. */ }
}
}
}
}
skip cache use for a specific condition, onSkip
will be triggered.
Example
skip (self, arg, ctx, info) {
if (ctx.reply.request.headers.authorization) {
return true
}
return false
}
called when a request is deduped.
When multiple requests arrive at the same time, the dedupe system calls the resolver only once and serve all the request with the result of the first request - and after the result is cached.
Example
onDedupe (type, fieldName) {
console.log(`dedupe ${type} ${fieldName}`)
}
called when a cached value is returned.
Example
onHit (type, fieldName) {
console.log(`hit ${type} ${fieldName}`)
}
called when there is no value in the cache; it is not called if a resolver is skipped.
Example
onMiss (type, fieldName) {
console.log(`miss ${type} ${fieldName}`)
}
called when the resolver is skipped, both by skip
or policy.skip
.
Example
onSkip (type, fieldName) {
console.log(`skip ${type} ${fieldName}`)
}
called when an error occurred on the caching operation. Example
onSkip (type, fieldName, error) {
console.error(`error on ${type} ${fieldName}`, error)
}
This option enables cache report with hit/miss/dedupes/skips count for all queries specified in the policy; default is disabled. The value of the interval is in seconds.
Example
logInterval: 3
custom function for logging cache hits/misses. called every logInterval
seconds when the cache report is logged.
Example
logReport (report) {
console.log('Periodic cache report')
console.table(report)
}
// console table output
┌───────────────┬─────────┬──────┬────────┬───────┐
│ (index) │ dedupes │ hits │ misses │ skips │
├───────────────┼─────────┼──────┼────────┼───────┤
│ Query.add │ 0 │ 8 │ 1 │ 0 │
│ Query.sub │ 0 │ 2 │ 6 │ 0 │
└───────────────┴─────────┴──────┴────────┴───────┘
// report format
{
"Query.add": {
"dedupes": 0,
"hits": 8,
"misses": 1,
"skips": 0
},
"Query.sub": {
"dedupes": 0,
"hits": 2,
"misses": 6,
"skips": 0
},
}
clear
method allows to pragmatically clear the cache entries, for example
const app = fastify()
await app.register(cache, {
ttl: 60,
policy: {
// ...
}
})
// ...
await app.graphql.cache.clear()
Along with time to live
invalidation of the cache entries, we can use invalidation by keys.
The concept behind invalidation by keys is that entries have an auxiliary key set that explicitly links requests along with their result. These auxiliary keys are called here references
.
The use case is common. Let's say we have an entry user {id: 1, name: "Alice"}
, it may change often or rarely, the ttl
system is not accurate:
ttl
expiration, in this case the old value is shown until expiration by ttl
.getUser
and findUsers
, so we need to keep their responses consistentttl
expiration, so in this case, we don't need to reload the value, because it's not changedTo solve this common problem, we can use references
.
We can say that the result of query getUser(id: 1)
has reference user~1
, and the result of query findUsers
, containing {id: 1, name: "Alice"},{id: 2, name: "Bob"}
has references [user~1,user~2]
.
So we can find the results in the cache by their references
, independently of the request that generated them, and we can invalidate by references
.
When the mutation updateUser
involves user {id: 1}
we can remove all the entries in the cache that have references to user~1
, so the result of getUser(id: 1)
and findUsers
, and they will be reloaded at the next request with the new data - but not the result of getUser(id: 2)
.
However, the operations required to do that could be expensive and not worthing it, for example, is not recommendable to cache frequently updating data by queries of find
that have pagination/filtering/sorting.
Explicit invalidation is disabled
by default, you have to enable in storage
settings.
See mercurius-cache-example for a complete example.
Using a redis
storage is the best choice for a shared cache for a cluster of a service instance.
However, using the invalidation system need to keep references
updated, and remove the expired ones: while expired references do not compromise the cache integrity, they slow down the I/O operations.
So, redis storage has the gc
function, to perform garbage collection.
See this example in mercurius-cache-example/plugins/cache.js about how to run gc on a single instance service.
Another example:
const { createStorage } = require('async-cache-dedupe')
const client = new Redis(connection)
const storage = createStorage('redis', { log, client, invalidation: true })
// run in lazy mode, doing a full db iteration / but not a full clean up
let cursor = 0
do {
const report = await storage.gc('lazy', { lazy: { chunk: 200, cursor } })
cursor = report.cursor
} while (cursor !== 0)
// run in strict mode
const report = await storage.gc('strict', { chunk: 250 })
In lazy mode, only options.max
references are scanned every time, picking keys to check randomly; this operation is lighter while does not ensure references full clean up
In strict mode, all references and keys are checked and cleaned; this operation scans the whole db and is slow, while it ensures full references clean up.
gc
options are:
64
lazy
mode, default 64
; if both chunk
and lazy.chunk
is set, the maximum one is takenreport.cursor
to continue scanning from the previous operationstorage.gc
function returns the report
of the job, like
"report":{
"references":{
"scanned":["r:user:8", "r:group:11", "r:group:16"],
"removed":["r:user:8", "r:group:16"]
},
"keys":{
"scanned":["users~1"],
"removed":["users~1"]
},
"loops":4,
"cursor":0,
"error":null
}
An effective strategy is to run often lazy
cleans and a strict
clean sometimes.
The report contains useful information about the gc cycle, use them to adjust params of the gc utility, settings depending on the size, and the mutability of cached data.
A way is to run it programmatically, as in https://github.com/mercurius-js/mercurius-cache-example or set up cronjobs as described in examples/redis-gc - this one is useful when there are many instances of the mercurius server.
See async-cache-dedupe#redis-garbage-collector for details.
0.11.0
-> 0.12.0
options.cacheSize
is dropped in favor of storage
storage.get
and storage.set
are removed in favor of storage
optionsWe have experienced up to 10x performance improvements in real-world scenarios. This repository also includes a benchmark of a gateway and two federated services that shows that adding a cache with 10ms TTL can improve the performance by 4x:
$ sh bench.sh
===============================
= Gateway Mode (not cache) =
===============================
Running 10s test @ http://localhost:3000/graphql
100 connections
┌─────────┬───────┬───────┬───────┬───────┬──────────┬─────────┬────────┐
│ Stat │ 2.5% │ 50% │ 97.5% │ 99% │ Avg │ Stdev │ Max │
├─────────┼───────┼───────┼───────┼───────┼──────────┼─────────┼────────┤
│ Latency │ 28 ms │ 31 ms │ 57 ms │ 86 ms │ 33.47 ms │ 12.2 ms │ 238 ms │
└─────────┴───────┴───────┴───────┴───────┴──────────┴─────────┴────────┘
┌───────────┬────────┬────────┬─────────┬─────────┬─────────┬────────┬────────┐
│ Stat │ 1% │ 2.5% │ 50% │ 97.5% │ Avg │ Stdev │ Min │
├───────────┼────────┼────────┼─────────┼─────────┼─────────┼────────┼────────┤
│ Req/Sec │ 1291 │ 1291 │ 3201 │ 3347 │ 2942.1 │ 559.51 │ 1291 │
├───────────┼────────┼────────┼─────────┼─────────┼─────────┼────────┼────────┤
│ Bytes/Sec │ 452 kB │ 452 kB │ 1.12 MB │ 1.17 MB │ 1.03 MB │ 196 kB │ 452 kB │
└───────────┴────────┴────────┴─────────┴─────────┴─────────┴────────┴────────┘
Req/Bytes counts sampled once per second.
32k requests in 11.03s, 11.3 MB read
===============================
= Gateway Mode (0s TTL) =
===============================
Running 10s test @ http://localhost:3000/graphql
100 connections
┌─────────┬──────┬──────┬───────┬───────┬─────────┬─────────┬────────┐
│ Stat │ 2.5% │ 50% │ 97.5% │ 99% │ Avg │ Stdev │ Max │
├─────────┼──────┼──────┼───────┼───────┼─────────┼─────────┼────────┤
│ Latency │ 6 ms │ 7 ms │ 12 ms │ 17 ms │ 7.29 ms │ 3.32 ms │ 125 ms │
└─────────┴──────┴──────┴───────┴───────┴─────────┴─────────┴────────┘
┌───────────┬─────────┬─────────┬─────────┬─────────┬─────────┬─────────┬─────────┐
│ Stat │ 1% │ 2.5% │ 50% │ 97.5% │ Avg │ Stdev │ Min │
├───────────┼─────────┼─────────┼─────────┼─────────┼─────────┼─────────┼─────────┤
│ Req/Sec │ 7403 │ 7403 │ 13359 │ 13751 │ 12759 │ 1831.94 │ 7400 │
├───────────┼─────────┼─────────┼─────────┼─────────┼─────────┼─────────┼─────────┤
│ Bytes/Sec │ 2.59 MB │ 2.59 MB │ 4.68 MB │ 4.81 MB │ 4.47 MB │ 642 kB │ 2.59 MB │
└───────────┴─────────┴─────────┴─────────┴─────────┴─────────┴─────────┴─────────┘
Req/Bytes counts sampled once per second.
128k requests in 10.03s, 44.7 MB read
===============================
= Gateway Mode (1s TTL) =
===============================
Running 10s test @ http://localhost:3000/graphql
100 connections
┌─────────┬──────┬──────┬───────┬───────┬─────────┬─────────┬────────┐
│ Stat │ 2.5% │ 50% │ 97.5% │ 99% │ Avg │ Stdev │ Max │
├─────────┼──────┼──────┼───────┼───────┼─────────┼─────────┼────────┤
│ Latency │ 7 ms │ 7 ms │ 13 ms │ 19 ms │ 7.68 ms │ 4.01 ms │ 149 ms │
└─────────┴──────┴──────┴───────┴───────┴─────────┴─────────┴────────┘
┌───────────┬─────────┬─────────┬─────────┬─────────┬─────────┬─────────┬─────────┐
│ Stat │ 1% │ 2.5% │ 50% │ 97.5% │ Avg │ Stdev │ Min │
├───────────┼─────────┼─────────┼─────────┼─────────┼─────────┼─────────┼─────────┤
│ Req/Sec │ 6735 │ 6735 │ 12879 │ 12951 │ 12173 │ 1828.86 │ 6735 │
├───────────┼─────────┼─────────┼─────────┼─────────┼─────────┼─────────┼─────────┤
│ Bytes/Sec │ 2.36 MB │ 2.36 MB │ 4.51 MB │ 4.53 MB │ 4.26 MB │ 640 kB │ 2.36 MB │
└───────────┴─────────┴─────────┴─────────┴─────────┴─────────┴─────────┴─────────┘
Req/Bytes counts sampled once per second.
122k requests in 10.03s, 42.6 MB read
===============================
= Gateway Mode (10s TTL) =
===============================
Running 10s test @ http://localhost:3000/graphql
100 connections
┌─────────┬──────┬──────┬───────┬───────┬─────────┬─────────┬────────┐
│ Stat │ 2.5% │ 50% │ 97.5% │ 99% │ Avg │ Stdev │ Max │
├─────────┼──────┼──────┼───────┼───────┼─────────┼─────────┼────────┤
│ Latency │ 7 ms │ 7 ms │ 13 ms │ 18 ms │ 7.51 ms │ 3.22 ms │ 121 ms │
└─────────┴──────┴──────┴───────┴───────┴─────────┴─────────┴────────┘
┌───────────┬────────┬────────┬─────────┬─────────┬─────────┬─────────┬────────┐
│ Stat │ 1% │ 2.5% │ 50% │ 97.5% │ Avg │ Stdev │ Min │
├───────────┼────────┼────────┼─────────┼─────────┼─────────┼─────────┼────────┤
│ Req/Sec │ 7147 │ 7147 │ 13231 │ 13303 │ 12498.2 │ 1807.01 │ 7144 │
├───────────┼────────┼────────┼─────────┼─────────┼─────────┼─────────┼────────┤
│ Bytes/Sec │ 2.5 MB │ 2.5 MB │ 4.63 MB │ 4.66 MB │ 4.37 MB │ 633 kB │ 2.5 MB │
└───────────┴────────┴────────┴─────────┴─────────┴─────────┴─────────┴────────┘
Req/Bytes counts sampled once per second.
125k requests in 10.03s, 43.7 MB read
MIT
FAQs
Cache the results of your GraphQL resolvers, for Mercurius
The npm package mercurius-cache receives a total of 1,134 weekly downloads. As such, mercurius-cache popularity was classified as popular.
We found that mercurius-cache demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 0 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
Security News
Socket researchers uncover a malicious npm package posing as a tool for detecting vulnerabilities in Etherium smart contracts.
Security News
Research
A supply chain attack on Rspack's npm packages injected cryptomining malware, potentially impacting thousands of developers.
Research
Security News
Socket researchers discovered a malware campaign on npm delivering the Skuld infostealer via typosquatted packages, exposing sensitive data.