Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

ml-spectra-fitting

Package Overview
Dependencies
Maintainers
4
Versions
33
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

ml-spectra-fitting

Fit spectra using gaussian or lorentzian

  • 4.2.1
  • Source
  • npm
  • Socket score

Version published
Weekly downloads
152
decreased by-87.13%
Maintainers
4
Weekly downloads
 
Created
Source

ml-spectra-fitting

NPM version build status npm download

This is a spectra fitting package to optimize the position (x), max intensity (y), full width at half maximum (FWHM = width) and the ratio of gaussian contribution (mu) if it's required. It supports three kind of shapes:

NameEquation
Gaussian
Lorentzian
Pseudo Voigt

where

It is a wrapper of ml-levenberg-marquardt

API Documentation

Installation

$ npm install ml-spectra-fitting

Example

import { optimize } from 'ml-spectra-fitting';
import { SpectrumGenerator } from 'spectrum-generator';

const generator = new SpectrumGenerator({
  nbPoints: 101,
  from: -1,
  to: 1,
});

// by default the kind of shape is gaussian;
generator.addPeak({ x: 0.5, y: 0.2 }, { fwhm: 0.2 });
generator.addPeak(
  { x: -0.5, y: 0.2 },
  {
    shape: {
      kind: 'lorentzian',
      fwhm: 0.1,
    },
  },
);

//points to fit {x, y};
let data = generator.getSpectrum();
console.log(JSON.stringify({ x: Array.from(data.x), y: Array.from(data.y) }));
//the approximate values to be optimized, It could coming from a peak picking with ml-gsd
let peaks = [
  {
    x: -0.5,
    y: 0.22,
    shape: {
      kind: 'gaussian',
      fwhm: 0.25,
    },
  },
  {
    x: 0.52,
    y: 0.18,
    shape: {
      kind: 'gaussian',
      fwhm: 0.18,
    },
  },
];

// the function receive an array of peak with {x, y, fwhm} as a guess
// and return a list of objects
let fittedParams = optimize(data, peaks, { shape: { kind: 'pseudoVoigt' } });

console.log(fittedParams);
const result = {
  error: 0.12361588652854476,
  iterations: 100,
  peaks: [
    {
      x: -0.5000014532421942,
      y: 0.19995307937326137,
      shape: {
        kind: 'pseudoVoigt',
        fwhm: 0.10007670374735196,
        mu: 0.004731136777288483,
      },
    },
    {
      x: 0.5001051783652894,
      y: 0.19960010175400406,
      shape: {
        kind: 'pseudoVoigt',
        fwhm: 0.19935932346969124,
        mu: 1,
      },
    },
  ],
};

For data with and combination of signals with shapes between gaussian and lorentzians, we could use the kind pseudovoigt to fit the data.

import { optimize } from 'ml-spectra-fitting';
import { SpectrumGenerator } from 'spectrum-generator';

const generator = new SpectrumGenerator({
  nbPoints: 101,
  from: -1,
  to: 1,
});

// by default the kind of shape is gaussian;
generator.addPeak({ x: 0.5, y: 0.2 }, { fwhm: 0.2 });
generator.addPeak(
  { x: -0.5, y: 0.2 },
  {
    shape: {
      kind: 'lorentzian',
      fwhm: 0.1,
    },
  },
);

//points to fit {x, y};
let data = generator.getSpectrum();
console.log(JSON.stringify({ x: Array.from(data.x), y: Array.from(data.y) }));
//the approximate values to be optimized, It could coming from a peak picking with ml-gsd
let peaks = [
  {
    x: -0.5,
    y: 0.22,
    shape: {
      kind: 'gaussian',
      fwhm: 0.25,
    },
  },
  {
    x: 0.52,
    y: 0.18,
    shape: {
      kind: 'gaussian',
      fwhm: 0.18,
    },
  },
];

// the function receive an array of peak with {x, y, fwhm} as a guess
// and return a list of objects
let fittedParams = optimize(data, peaks, { shape: { kind: 'pseudoVoigt' } });

console.log(fittedParams);
const result = {
  error: 0.12361588652854476,
  iterations: 100,
  peaks: [
    {
      x: -0.5000014532421942,
      y: 0.19995307937326137,
      shape: {
        kind: 'pseudoVoigt',
        fwhm: 0.10007670374735196,
        mu: 0.004731136777288483,
      },
    },
    {
      x: 0.5001051783652894,
      y: 0.19960010175400406,
      shape: {
        kind: 'pseudoVoigt',
        fwhm: 0.19935932346969124,
        mu: 1,
      },
    },
  ],
};

License

MIT

Keywords

FAQs

Package last updated on 24 Mar 2023

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc