Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

opencv4nodejs-prebuilt-install

Package Overview
Dependencies
Maintainers
1
Versions
23
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

opencv4nodejs-prebuilt-install

Asynchronous OpenCV 4.x nodejs bindings with JavaScript and TypeScript API.

  • 4.1.145
  • Source
  • npm
  • Socket score

Version published
Maintainers
1
Created
Source

opencv4nodejs-prebuilt-install

Tested Released Supported node versions Supported electron versions

Simple installation Opencv 4.1.1 for node with pre-compiled bindings

Cross-platform!

Supports
  • Windows, Linux , MacOS
  • node 12,13,14,15,16,17,18,19
  • arh x64

How to install

npm i opencv4nodejs-prebuilt-install
  • Examples
  • Quick Start
  • Async API
  • With TypeScript
  • External Memory Tracking (v4.0.0)

Examples

See examples for implementation.

Face Detection

face0 face1

Face Recognition with the OpenCV face module

Check out Node.js + OpenCV for Face Recognition.

facerec

Face Landmarks with the OpenCV face module

facelandmarks

Face Recognition with face-recognition.js

Check out Node.js + face-recognition.js : Simple and Robust Face Recognition using Deep Learning.

IMAGE ALT TEXT

Hand Gesture Recognition

Check out Simple Hand Gesture Recognition using OpenCV and JavaScript.

gesture-rec_sm

Object Recognition with Deep Neural Networks

Check out Node.js meets OpenCV’s Deep Neural Networks — Fun with Tensorflow and Caffe.

Tensorflow Inception

husky car banana

Single Shot Multibox Detector with COCO

dishes-detection car-detection

Machine Learning

Check out Machine Learning with OpenCV and JavaScript: Recognizing Handwritten Letters using HOG and SVM.

resulttable

Object Tracking

trackbgsubtract trackbycolor

Feature Matching

matchsift

Image Histogram

plotbgr plotgray

Boiler plate for combination of opencv4nodejs, express and websockets

opencv4nodejs-express-websockets - Boilerplate express app for getting started on opencv with nodejs and to live stream the video through websockets.

Automating lights by people detection through classifier

Check out Automating lights with Computer Vision & NodeJS.

user-presence

Quick Start

const cv = require('opencv4nodejs-prebuilt-install');

Initializing Mat (image matrix), Vec, Point

const rows = 100; // height
const cols = 100; // width

// empty Mat
const emptyMat = new cv.Mat(rows, cols, cv.CV_8UC3);

// fill the Mat with default value
const whiteMat = new cv.Mat(rows, cols, cv.CV_8UC1, 255);
const blueMat = new cv.Mat(rows, cols, cv.CV_8UC3, [255, 0, 0]);

// from array (3x3 Matrix, 3 channels)
const matData = [
  [[255, 0, 0], [255, 0, 0], [255, 0, 0]],
  [[0, 0, 0], [0, 0, 0], [0, 0, 0]],
  [[255, 0, 0], [255, 0, 0], [255, 0, 0]]
];
const matFromArray = new cv.Mat(matData, cv.CV_8UC3);

// from node buffer
const charData = [255, 0, ...];
const matFromArray = new cv.Mat(Buffer.from(charData), rows, cols, cv.CV_8UC3);

// Point
const pt2 = new cv.Point(100, 100);
const pt3 = new cv.Point(100, 100, 0.5);

// Vector
const vec2 = new cv.Vec(100, 100);
const vec3 = new cv.Vec(100, 100, 0.5);
const vec4 = new cv.Vec(100, 100, 0.5, 0.5);

Mat and Vec operations

const mat0 = new cv.Mat(...);
const mat1 = new cv.Mat(...);

// arithmetic operations for Mats and Vecs
const matMultipliedByScalar = mat0.mul(0.5);  // scalar multiplication
const matDividedByScalar = mat0.div(2);       // scalar division
const mat0PlusMat1 = mat0.add(mat1);          // addition
const mat0MinusMat1 = mat0.sub(mat1);         // subtraction
const mat0MulMat1 = mat0.hMul(mat1);          // elementwise multiplication
const mat0DivMat1 = mat0.hDiv(mat1);          // elementwise division

// logical operations Mat only
const mat0AndMat1 = mat0.and(mat1);
const mat0OrMat1 = mat0.or(mat1);
const mat0bwAndMat1 = mat0.bitwiseAnd(mat1);
const mat0bwOrMat1 = mat0.bitwiseOr(mat1);
const mat0bwXorMat1 = mat0.bitwiseXor(mat1);
const mat0bwNot = mat0.bitwiseNot();

Accessing Mat data

const matBGR = new cv.Mat(..., cv.CV_8UC3);
const matGray = new cv.Mat(..., cv.CV_8UC1);

// get pixel value as vector or number value
const vec3 = matBGR.at(200, 100);
const grayVal = matGray.at(200, 100);

// get raw pixel value as array
const [b, g, r] = matBGR.atRaw(200, 100);

// set single pixel values
matBGR.set(50, 50, [255, 0, 0]);
matBGR.set(50, 50, new Vec(255, 0, 0));
matGray.set(50, 50, 255);

// get a 25x25 sub region of the Mat at offset (50, 50)
const width = 25;
const height = 25;
const region = matBGR.getRegion(new cv.Rect(50, 50, width, height));

// get a node buffer with raw Mat data
const matAsBuffer = matBGR.getData();

// get entire Mat data as JS array
const matAsArray = matBGR.getDataAsArray();

IO

// load image from file
const mat = cv.imread('./path/img.jpg');
cv.imreadAsync('./path/img.jpg', (err, mat) => {
  ...
})

// save image
cv.imwrite('./path/img.png', mat);
cv.imwriteAsync('./path/img.jpg', mat, (err) => {
  ...
})

// show image
cv.imshow('a window name', mat);
cv.waitKey();

// load base64 encoded image
const base64text='..';//Base64 encoded string
const base64data =base64text.replace('data:image/jpeg;base64','')
                            .replace('data:image/png;base64','');//Strip image type prefix
const buffer = Buffer.from(base64data,'base64');
const image = cv.imdecode(buffer); //Image is now represented as Mat

// convert Mat to base64 encoded jpg image
const outBase64 =  cv.imencode('.jpg', croppedImage).toString('base64'); // Perform base64 encoding
const htmlImg='<img src=data:image/jpeg;base64,'+outBase64 + '>'; //Create insert into HTML compatible <img> tag

// open capture from webcam
const devicePort = 0;
const wCap = new cv.VideoCapture(devicePort);

// open video capture
const vCap = new cv.VideoCapture('./path/video.mp4');

// read frames from capture
const frame = vCap.read();
vCap.readAsync((err, frame) => {
  ...
});

// loop through the capture
const delay = 10;
let done = false;
while (!done) {
  let frame = vCap.read();
  // loop back to start on end of stream reached
  if (frame.empty) {
    vCap.reset();
    frame = vCap.read();
  }

  // ...

  const key = cv.waitKey(delay);
  done = key !== 255;
}

Useful Mat methods

const matBGR = new cv.Mat(..., cv.CV_8UC3);

// convert types
const matSignedInt = matBGR.convertTo(cv.CV_32SC3);
const matDoublePrecision = matBGR.convertTo(cv.CV_64FC3);

// convert color space
const matGray = matBGR.bgrToGray();
const matHSV = matBGR.cvtColor(cv.COLOR_BGR2HSV);
const matLab = matBGR.cvtColor(cv.COLOR_BGR2Lab);

// resize
const matHalfSize = matBGR.rescale(0.5);
const mat100x100 = matBGR.resize(100, 100);
const matMaxDimIs100 = matBGR.resizeToMax(100);

// extract channels and create Mat from channels
const [matB, matG, matR] = matBGR.splitChannels();
const matRGB = new cv.Mat([matR, matB, matG]);

Drawing a Mat into HTML Canvas

const img = ...

// convert your image to rgba color space
const matRGBA = img.channels === 1
  ? img.cvtColor(cv.COLOR_GRAY2RGBA)
  : img.cvtColor(cv.COLOR_BGR2RGBA);

// create new ImageData from raw mat data
const imgData = new ImageData(
  new Uint8ClampedArray(matRGBA.getData()),
  img.cols,
  img.rows
);

// set canvas dimensions
const canvas = document.getElementById('myCanvas');
canvas.height = img.rows;
canvas.width = img.cols;

// set image data
const ctx = canvas.getContext('2d');
ctx.putImageData(imgData, 0, 0);

Method Interface

OpenCV method interface from official docs or src:

void GaussianBlur(InputArray src, OutputArray dst, Size ksize, double sigmaX, double sigmaY = 0, int borderType = BORDER_DEFAULT);

translates to:

const src = new cv.Mat(...);
// invoke with required arguments
const dst0 = src.gaussianBlur(new cv.Size(5, 5), 1.2);
// with optional paramaters
const dst2 = src.gaussianBlur(new cv.Size(5, 5), 1.2, 0.8, cv.BORDER_REFLECT);
// or pass specific optional parameters
const optionalArgs = {
  borderType: cv.BORDER_CONSTANT
};
const dst2 = src.gaussianBlur(new cv.Size(5, 5), 1.2, optionalArgs);

Async API

The async API can be consumed by passing a callback as the last argument of the function call. By default, if an async method is called without passing a callback, the function call will yield a Promise.

Async Face Detection

const classifier = new cv.CascadeClassifier(cv.HAAR_FRONTALFACE_ALT2);

// by nesting callbacks
cv.imreadAsync('./faceimg.jpg', (err, img) => {
  if (err) { return console.error(err); }

  const grayImg = img.bgrToGray();
  classifier.detectMultiScaleAsync(grayImg, (err, res) => {
    if (err) { return console.error(err); }

    const { objects, numDetections } = res;
    ...
  });
});

// via Promise
cv.imreadAsync('./faceimg.jpg')
  .then(img =>
    img.bgrToGrayAsync()
      .then(grayImg => classifier.detectMultiScaleAsync(grayImg))
      .then((res) => {
        const { objects, numDetections } = res;
        ...
      })
  )
  .catch(err => console.error(err));

// using async await
try {
  const img = await cv.imreadAsync('./faceimg.jpg');
  const grayImg = await img.bgrToGrayAsync();
  const { objects, numDetections } = await classifier.detectMultiScaleAsync(grayImg);
  ...
} catch (err) {
  console.error(err);
}

With TypeScript

import * as cv from 'opencv4nodejs-prebuilt-install'

Check out the TypeScript examples.

External Memory Tracking (v4.0.0)

Since version 4.0.0 was released, external memory tracking has been enabled by default. Simply put, the memory allocated for Matrices (cv.Mat) will be manually reported to the node process. This solves the issue of inconsistent Garbage Collection, which could have resulted in spiking memory usage of the node process eventually leading to overflowing the RAM of your system, prior to version 4.0.0.

Note, that in doubt this feature can be disabled by setting an environment variable OPENCV4NODEJS_DISABLE_EXTERNAL_MEM_TRACKING before requiring the module:

export OPENCV4NODEJS_DISABLE_EXTERNAL_MEM_TRACKING=1 // linux
set OPENCV4NODEJS_DISABLE_EXTERNAL_MEM_TRACKING=1 // windows

Or directly in your code:

process.env.OPENCV4NODEJS_DISABLE_EXTERNAL_MEM_TRACKING = 1
const cv = require('opencv4nodejs-prebuilt-install')

Keywords

FAQs

Package last updated on 31 Dec 2022

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc