quaggaJS
What is QuaggaJS?
QuaggaJS is a barcode-scanner entirely written in JavaScript supporting real-
time localization and decoding of various types of barcodes such as EAN,
CODE 128, CODE 39, EAN 8, UPC-A, UPC-C, I2of5 and
CODABAR. The library is also capable of using getUserMedia
to get direct
access to the user's camera stream. Although the code relies on heavy image-
processing even recent smartphones are capable of locating and decoding
barcodes in real-time.
Try some examples and check out
the blog post (How barcode-localization works in QuaggaJS)
if you want to dive deeper into this topic.
Yet another barcode library?
This is not yet another port of the great zxing library, but
more of an extension to it. This implementation features a barcode locator which
is capable of finding a barcode-like pattern in an image resulting in an
estimated bounding box including the rotation. Simply speaking, this reader is
invariant to scale and rotation, whereas other libraries require the barcode to
be aligned with the viewport.
Requirements
In order to take full advantage of quaggaJS, the browser needs to support the
getUserMedia
API which is already implemented in recent versions of Firefox,
Chrome, IE (Edge) and Opera. The API is also available on their mobile
counterparts installed on Android (except IE). Safari does not allow the access
to the camera yet, neither on desktop, nor on mobile. You can check
caniuse for updates.
In cases where real-time decoding is not needed, or the platform does not
support getUserMedia
QuaggaJS is also capable of decoding image-files using
the File API or other URL sources.
Installing
QuaggaJS can be installed using npm, bower, or by including it with
the script tag.
NPM
> npm install quagga
And then import it as dependency in your project:
var Quagga = require('quagga');
Currently, the full functionality is only available through the browser. When
using QuaggaJS within node, only file-based decoding is available. See the
example for node_examples.
Bower
You can also install QuaggaJS through bower:
> bower install quagga
Script-Tag Anno 1998
You can simply include dist/quagga.min.js
in your project and you are ready
to go.
Getting Started
For starters, have a look at the examples to get an idea
where to go from here.
You can build the library yourself by simply cloning the repo and typing:
> npm install
> npm run build
This npm script builds a non optimized version quagga.js
and a minified
version quagga.min.js
and places both files in the dist
folder.
Additionally, a quagga.map
source-map is placed alongside these files. This
file is only valid for the non-uglified version quagga.js
because the
minified version is altered after compression and does not align with the map
file any more.
API
You can check out the examples to get an idea of how to
use QuaggaJS. Basically the library exposes the following API:
This method initializes the library for a given configuration config
(see
below) and invokes the callback(err)
when Quagga has finished its
bootstrapping phase. The initialization process also requests for camera
access if real-time detection is configured. In case of an error, the err
parameter is set and contains information about the cause. A potential cause
may be the inputStream.type
is set to LiveStream
, but the browser does
not support this API, or simply if the user denies the permission to use the
camera.
Quagga.init({
inputStream : {
name : "Live",
type : "LiveStream"
},
decoder : {
readers : ["code_128_reader"]
}
}, function(err) {
if (err) {
console.log(err);
return
}
console.log("Initialization finished. Ready to start");
Quagga.start();
});
Quagga.start()
When the library is initialized, the start()
method starts the video-stream
and begins locating and decoding the images.
Quagga.stop()
If the decoder is currently running, after calling stop()
the decoder does not
process any more images. Additionally, if a camera-stream was requested upon
initialization, this operation also disconnects the camera.
Quagga.onProcessed(callback)
This method registers a callback(data)
function that is called for each frame
after the processing is done. The data
object contains detailed information
about the success/failure of the operation. The output varies, depending whether
the detection and/or decoding were successful or not.
Quagga.onDetected(callback)
Registers a callback(data)
function which is triggered whenever a barcode-
pattern has been located and decoded successfully. The passed data
object
contains information about the decoding process including the detected code
which can be obtained by calling data.codeResult.code
.
Quagga.decodeSingle(config, callback)
In contrast to the calls described above, this method does not rely on
getUserMedia
and operates on a single image instead. The provided callback
is the same as in onDetected
and contains the result data
object.
Quagga.offProcessed(handler)
In case the onProcessed
event is no longer relevant, offProcessed
removes
the given handler
from the event-queue.
Quagga.offDetected(handler)
In case the onDetected
event is no longer relevant, offDetected
removes
the given handler
from the event-queue.
The callbacks passed into onProcessed
, onDetected
and decodeSingle
receive a data
object upon execution. The data
object contains the following
information. Depending on the success, some fields may be undefined
or just
empty.
{
"codeResult": {
"code": "FANAVF1461710",
"format": "code_128",
"start": 355,
"end": 26,
"codeset": 100,
"startInfo": {
"error": 1.0000000000000002,
"code": 104,
"start": 21,
"end": 41
},
"decodedCodes": [{
"code": 104,
"start": 21,
"end": 41
},
{
"error": 0.8888888888888893,
"code": 106,
"start": 328,
"end": 350
}],
"endInfo": {
"error": 0.8888888888888893,
"code": 106,
"start": 328,
"end": 350
},
"direction": -1
},
"line": [{
"x": 25.97278706156836,
"y": 360.5616435369468
}, {
"x": 401.9220519377024,
"y": 70.87524989906444
}],
"angle": -0.6565217179979483,
"pattern": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1],
"box": [
[77.4074243622672, 410.9288668804402],
[0.050203235235130705, 310.53619724086366],
[360.15706727788256, 33.05711026051813],
[437.5142884049146, 133.44977990009465]
],
"boxes": [
[
[77.4074243622672, 410.9288668804402],
[0.050203235235130705, 310.53619724086366],
[360.15706727788256, 33.05711026051813],
[437.5142884049146, 133.44977990009465]
],
[
[248.90769330706507, 415.2041489551161],
[198.9532321622869, 352.62160512937635],
[339.546160777576, 240.3979259789976],
[389.5006219223542, 302.98046980473737]
]
]
}
The default config
object is set as followed:
{
inputStream: { name: "Live",
type: "LiveStream",
constraints: {
width: 640,
height: 480,
facing: "environment"
},
area: {
top: "0%",
right: "0%",
left: "0%",
bottom: "0%"
},
singleChannel: false
},
tracking: false,
debug: false,
controls: false,
locate: true,
numOfWorkers: 4,
visual: {
show: true
},
decoder:{
drawBoundingBox: false,
showFrequency: false,
drawScanline: true,
showPattern: false,
readers: [
'code_128_reader'
]
},
locator: {
halfSample: true,
patchSize: "medium",
showCanvas: false,
showPatches: false,
showFoundPatches: false,
showSkeleton: false,
showLabels: false,
showPatchLabels: false,
showRemainingPatchLabels: false,
boxFromPatches: {
showTransformed: false,
showTransformedBox: false,
showBB: false
}
}
}
Examples
The following example takes an image src
as input and prints the result on the
console. The decoder is configured to detect Code128 barcodes and enables the
locating-mechanism for more robust results.
Quagga.decodeSingle({
decoder: {
readers: ["code_128_reader"]
},
locate: true,
src: '/test/fixtures/code_128/image-001.jpg'
}, function(result){
if(result.codeResult) {
console.log("result", result.codeResult.code);
} else {
console.log("not detected");
}
});
The following example illustrates the use of QuaggaJS within a node
environment. It's almost identical to the browser version with the difference
that node does not support web-workers out of the box. Therefore the config
property numOfWorkers
must be explicitly set to 0
.
var Quagga = require('quagga');
Quagga.decodeSingle({
src: "image-abc-123.jpg",
numOfWorkers: 0,
inputStream: {
size: 800
},
decoder: {
readers: ["code_128_reader"]
},
}, function(result) {
if(result.codeResult) {
console.log("result", result.codeResult.code);
} else {
console.log("not detected");
}
});
Tests
Unit Tests can be run with Karma and written using
Mocha, Chai and SinonJS. Coverage reports are
automatically generated in the coverage/ folder.
> npm install
> npm run test
Image Debugging
In case you want to take a deeper dive into the inner workings of Quagga, get to
know the debugging capabilities of the current implementation. The various
flags exposed through the config
object give you the abilily to visualize
almost every step in the processing. Because of the introduction of the
web-workers, and their restriction not to have access to the DOM, the
configuration must be explicitly set to config.numOfWorkers = 0
in order to
work.
Quagga is not perfect by any means and may produce false positives from time
to time. In order to find out which images produced those false positives,
the built-in ResultCollector
will support you and me helping squashing
bugs in the implementation.
Creating a ResultCollector
You can easily create a new ResultCollector
by calling its create
method with a configuration.
var resultCollector = Quagga.ResultCollector.create({
capture: true,
capacity: 20,
blacklist: [
{code: "3574660239843", format: "ean_13"}],
filter: function(codeResult) {
return true;
}
});
Using a ResultCollector
After creating a ResultCollector
you have to attach it to Quagga by
calling Quagga.registerResultCollector(resultCollector)
.
Reading results
After a test/recording session, you can now print the collected results which
do not fit into a certain schema. Calling getResults
on the
resultCollector
returns an Array
containing objects with:
{
codeResult: {},
frame: "..."
}
The frame
property is an internal representation of the image and
therefore only available in gray-scale. The dataURL representation allows
easy saving/rendering of the image.
Comparing results
Now, having the frames available on disk, you can load each single image by
calling decodeSingle
with the same configuration as used during recording
. In order to reproduce the exact same result, you have to make sure to turn
on the singleChannel
flag in the configuration when using decodeSingle
.
2015-11-15
- Fixes
- Fixed inconsistency in Code 39 decoding
- added inline-source-map to quagga.js file
2015-10-13
Take a look at the release-notes ([0.8.0]
(https://github.com/serratus/quaggaJS/releases/tag/v0.8.0))
- Improvements
- Replaced RequireJS with webpack
2015-09-15
Take a look at the release-notes ([0.7.0]
(https://github.com/serratus/quaggaJS/releases/tag/v0.7.0))
- Features
- Added basic support for running QuaggaJS inside node (see [example]
(#node-example))
2015-08-29
- Improvements
- Added support for Internet Explorer (only Edge+ supports
getUserMedia
)
2015-08-13
- Improvements
- Added
offProcessed
and offDetected
methods for detaching event-
listeners from the event-queue.
2015-07-29
- Features
- Added basic support for ITF barcodes (
i2of5_reader
)
2015-07-08
- Improvements
- Parameter tweaking to reduce false-positives significantly (for the
entire EAN and UPC family)
- Fixing bug in parity check for UPC-E codes
- Fixing bug in alignment for EAN-8 codes
2015-07-06
2015-06-21
- Features
- Added
singleChannel
configuration to inputStream
(in [config]
(#configobject)) - Added
ResultCollector
functionality (see [ResultCollector]
(#resultcollector))
2015-06-13
- Improvements
- Added
format
property to codeResult
(in result)
2015-06-13
- Improvements
- Added fixes for
Code39Reader
(trailing whitespace was missing)
2015-06-09
- Features
- Introduced the
area
property - Ability to define a rectangle where localization/decoding should be applied
2015-05-20
- Improvements
- Making EAN and UPC readers even more restrictive
- Added example using requirejs
2015-05-18
- Improvements
- Making EAN and UPC readers more restrictive
- Added integration-tests for all barcode-readers
2015-05-09
- Improvements
- Odd image dimensions no longer cause problems
2015-04-30
- Features
- Improvements
- Added extended configuration to the live-video example
- Releasing resources when calling
Quagga.stop()
2015-04-25
- Improvements
- Added extended configuration to the file-input example
- Configurable
patchSize
for better adjustment to small/medium/large
barcodes
2015-04-16
2015-03-16
- Improvements
- now includes minified version (23.3KB gzipped)
- No need for configuration of script-name any more
2015-03-12
- Improvements
- removed dependency on async.js
2015-03-04
2015-01-21
- Features
- Added support for web-worker (using 4 workers as default, can be changed
through
config.numOfWorkers
) - Due to the way how web-workers are created, the name of the script file
(
config.scriptName
) should be kept in sync with your actual filename - Removed canvas-overlay for decoding (boxes & scanline) which can now be
easily implemented using the existing API (see example)
- API Changes
In the course of implementing web-workers some breaking changes were
introduced to the API.
- The
Quagga.init
function no longer receives the callback as part of the
config but rather as a second argument: Quagga.init(config, cb)
- The callback to
Quagga.onDetected
now receives an object containing
much more information in addition to the decoded code.(see
data) - Added
Quagga.onProcessed(callback)
which provides a way to get information
for each image processed. The callback receives the same data
object as
Quagga.onDetected
does. Depending on the success of the process the data
object might not contain any resultCode
and/or box
properties.