scale-ts
A modular, composable, strongly typed and lightweight implementation of the SCALE Codec
Installation
npm install --save scale-ts
Usage Example
import { bool, _void, str, u32, Enum, Struct, Vector } from "scale-ts"
const myCodec = Struct({
id: u32,
name: str,
friendIds: Vector(u32),
event: Enum({
_void,
one: str,
many: Vector(str),
allOrNothing: bool,
}),
})
Something really cool about this library is that by having composable codecs
with really good typings, then the inferred types of the custom codecs are
also really good. For instance, the inferred types of the myCodec
defined
above are:
type MyCodec = Codec<{
id: number;
name: string;
friendIds: number[];
event:
| { tag: _void; value?: undefined };
| { tag: one; value: string; }
| { tag: many; value: string[]; }
| { tag: allOrNothing; value: boolean; };
}>
That's very useful, because on the one hand we will get a TS error if we try to
pass an invalid input to the encoder. For instance, in the following example TS
will because the property event.value
is invalid for the provided tag
:
myCodec.enc({
event: { tag: "one", value: 5 },
name: "Some name",
id: 100,
friendIds: [1, 2, 3],
})
On the other hand, the result of the decoded value also has that same interface,
which is extremely useful.
An example on how to encoded/decode a valid value:
myCodec.enc({
id: 100,
name: "Some name",
friendIds: [1, 2, 3],
event: { tag: "allOrNothing" as const, value: true },
})
const decodedData = myCodec.dec(
"0x6400000024536f6d65206e616d650c0100000002000000030000000301",
)
console.log(JSON.stringify(decodedData, null, 2))
Custom Codecs
In this library you won't find common codec definitions like AccountId
.
However, since the codecs of this library are just composable functions, it is
very easy to create new custom codecs.
As an example, the internal implementation of the bool
codec looks like this:
import { enhanceCodec, u8, Codec } from "../"
const booleanToNumber = (value: boolean) => (value ? 1 : 0)
const numberToBoolean = Boolean
export const bool: Codec<boolean> = enhanceCodec(
u8,
booleanToNumber,
numberToBoolean,
)
Similarly, you could implement codecs based on other codecs. For instance, a
possible implementation of an AccountId
codec could be:
import { enhanceCodec, Bytes } from "scale-ts"
import { decodeAddress, encodeAddress } from "@polkadot/util-crypto"
export const AccountId = enhanceCodec(Bytes(32), decodeAddress, encodeAddress)
Types and Terminology
What is an Encoder
?
An Encoder
is a function with the following signature:
type Encoder<T> = (value: T) => Uint8Array
What is a Decoder
?
A Decoder
is a function with the following signature:
type Decoder<T> = (value: Uint8Array | ArrayBuffer | string) => T
What is an Codec
?
A Codec
is an interface that contains two functions: an Encoder
and a
Decoder
.
Also, for convenience, the codecs from scale-ts
allow you to access
then encoder and the decoder in 2 different ways:
- Destructuring a tuple
[Encoder<T>], Decoder<T>]
. E.g:
const [numberListEncoder, numberListDecoder] = Vector(u16)
const encodedList = numberListEncoder([4, 8, 15, 16, 23, 42])
const decodedList = numberListDecoder(encodedList)
- Through the
enc
and dec
properties of the codec. E.g:
const numberListCodec = Vector(u16)
const encodedList = numberListCodec.enc([4, 8, 15, 16, 23, 42])
const decodedList = numberListCodec.dec(encodedList)
Therefore, the type definition of Codec
is as follows:
type Codec<T> = [Encoder<T>, Decoder<T>] & {
enc: Encoder<T>
dec: Decoder<T>
}
What is a codec-creator (aka "higher order codec")?
A codec-creator is a function that takes one or many codecs through its
argument(s) and returns a new codec.
For instance: Tuple
, Vector
, Struct
, Enum
, etc
A convention of this library is that codec-creators are capitalized, to
differentiate them from codecs which are lowercase.
In the past this library used to refer to codec-creators as higher order codecs,
which is (maybe?) a more accurate term. However, many developers find that
terminology confusing, so from now on we will refer to them as "codec-creators",
or "codec-creator functions", which is a much more descriptive name.
API - Codecs & Codec-Creators
Supported codecs are: u8
, u16
, u32
, u64
, u128
,
i8
, i16
, i32
, i64
, i128
i128.enc(-18676936063680574795862633153229949450n)
i128.dec("0xf6f5f4f3f2f1f0f9f8f7f6f5f4f3f2f1")
compact.enc(65535)
compact.dec("0xfeff0300")
bool.enc(false)
bool.dec("0x01")
Normal cases:
cosnt optionalCompact = Option(compact)
optionalCompact.enc()
optionalCompact.enc(undefined)
optionalCompact.enc(1)
Exceptionally, if the input is bool
, then it always returns one byte:
cosnt optionalBool = Option(bool)
optionalBool.enc()
optionalBool.enc(true)
optionalBool.enc(false)
const resultCodec = Result(u8, bool)
resultCodec.enc({ success: true, value: 42 })
resultCodec.enc({ success: false, value: false })
Dynamic, for when the size is known at run time:
const numbers = Vector(u16)
numbers.enc([4, 8, 15, 16, 23, 42])
Fixed, for when the size is known at compile time:
const fiveNumbers = Vector(u16, 5)
numbers.enc([4, 8, 15, 16, 23])
str.enc("a$¢ह€한𐍈😃")
const compactAndBool = Tuple(compact, bool)
compactAndBool.enc([3, false])
const myCodec = Struct({
id: u32,
name: str,
friendIds: Vector(u32),
event: Enum({
_void,
one: str,
many: Vector(str),
allOrNothing: bool,
}),
})
myCodec.enc({
id: 100,
name: "Some name",
friendIds: [1, 2, 3],
event: { tag: "allOrNothing" as const, value: true },
})
const { enc, dec } = Enum({
nothingHere: _void,
someNumber: u8,
trueOrFalse: bool,
optionalBool: Option(bool),
optVoid: Option(_void),
})
enc({ tag: "nothingHere" })
dec("0x012a")
Bytes
Sometimes, mainly when creating your custom codecs, it's usefull to have a
codec that simply reads/writes a certain amount of bytes. For example, see the
example above for creating a custom AccountId
codec.
const [encode, decode] = Bytes(3)
encode(new Uint8Array([0, 15, 255]))
decode("0x000fff00")
_void
This is a special codec that it's mostly useful in combination with
Enum
, its type is Codec<void>
, and as you can imagine calling
_void.enc()
returns an empty Uint8Array
, while calling _void.dec
always returns undefined
.
API - Utils
TODO: document them
createCodec
enhanceEncoder
enhanceDecoder
enhanceCodec
FAQ
How can I encode/decode instances of classes?
A very important remark is that in this library you will only find the basic
primitives that can be used for building more complex codecs. That being said,
this library provides a set of utils to facilitate that.
Probably the easiest way to explain this is by solving a couple of examples,
so let's get to it.
Implementing a custom codec-creator: MapCodec
:
Let's say that you want to have a MapCodec
function that works like this:
const myMap: Codec<Map<number, string>> = MapCodec(u8, str)
How could we create that MapCodec
with scale-ts
?
Basically, what we want to do is to transform the result of a
Vector(Tuple(keyCodec, valueCodec))
to a Map
instance, and viceversa.
So, let's first create the encoder function, using enhanceEncoder
:
const MapEncoder = <K, V>(key: Encoder<K>, value: Encoder<V>) =>
enhanceEncoder(Vector.enc(Tuple.enc(key, value)), (input: Map<K, V>) =>
Array.from(input.entries()),
)
Now, let's create its decoder counterpart, using enhanceDecoder
:
const MapDecoder = <K, V>(key: Decoder<K>, value: Decoder<V>) =>
enhanceDecoder(
Vector.dec(Tuple.dec(key, value)),
(entries) => new Map(entries),
)
Finally, lets create the MapCodec
function:
export const MapCodec = <K, V>(
key: Codec<K>,
value: Codec<V>,
): Codec<Map<K, V>> =>
createCodec(MapEncoder(key.enc, value.enc), MapDecoder(key.dec, value.dec))
MapCodec.enc = MapEncoder
MapCodec.dec = MapDecoder
That's it 🎉!
Implementing a custom codec-creator: ClassCodec
:
Now, let's see how we can create a more complex function, like something
for encoding and decoding the instances of our classes, even if those instances
are more than mere setters/getters. Let's say that we want to create a
ClassCodec
function that can be used like this:
class RepeatedString {
constructor(item: string, nTimes: number) {
this.repetition = Array(nTimes).fill(item)
}
}
const repeatedStrCodec: Codec<RepeatedString> = ClassCodec(
RepeatedString,
[str, compact],
(value: RepeatedString) => [value.repetition[0], value.repetition.length],
)
How can we implement ClassCodec
with scale-ts
?
Basically, what we want to do is:
- For decoding: we want to instantiate the class using the result of a
Tuple
- For encoding: with the help of a function that maps the instance of the
class back to the argumetns of the constructor, encode the
Tuple
.
It goes without saying that this function could have other signatures, or more
overloads, of course. In fact, it's probably not that useful in real life, but
it's helpful for teaching purposes.
The only difficult thing about creating a codec-creator like this is to get the
types right, but let's not shy away from it.
First, let's write the function for encoding:
const ClassEncoder =
<
A extends Array<Encoder<any>>,
OT extends { [K in keyof A]: A[K] extends Encoder<infer D> ? D : unknown },
Constructor extends new (...args: OT) => any,
>(
mapper: (instance: InstanceType<Constructor>) => OT,
): Encoder<InstanceType<Constructor>> =>
(instance) => {
return Tuple.enc(...mapper(instance)) as any
}
So, leaving aside the complex types for inferring the arguments, the actual JS
code is pretty straight-forward.
Then, let's create the function for creating the Decoder:
const ClassDecoder = <
A extends Array<Decoder<any>>,
OT extends { [K in keyof A]: A[K] extends Decoder<infer D> ? D : unknown },
Constructor extends new (...args: OT) => any,
>(
classType: Constructor,
...decoders: A
): Decoder<InstanceType<Constructor>> =>
enhanceDecoder(
Tuple.dec(...decoders),
(args) => new classType(...(args as any)),
)
Same deal: complex types because we care about our users, but aside from that,
the actual JS code is pretty simple.
And now we are ready to put everything together:
const ClassCodec = <
A extends Array<Codec<any>>,
OT extends { [K in keyof A]: A[K] extends Codec<infer D> ? D : unknown },
Constructor extends new (...args: OT) => any,
>(
classType: Constructor,
codecs: A,
mapper: (instance: InstanceType<Constructor>) => OT,
) =>
createCodec(
ClassEncoder(mapper),
ClassDecoder(classType, ...codecs.map((c) => c.dec)),
)
ClassCodec.enc = ClassEncoder
ClassCodec.dec = ClassDecoder
Hopefully, these 2 examples showcase the main goal of the library: to provide
good and lean building blocks so that we can build complex things with them.
Wouldn't it be worth it to have some "sugar" codecs & codec-creators?
In the past this library used to have some "sugar" (Hex
, MapCodec
,
SetCodec
, date32
, etc).
However, all that "sugar" has been removed and it won't be coming back.
The main reason is that all those codecs (and codec-creators) can be easily
implemented in userland, and if we start adding sugar, then this library could
easily become a chaotic directory with all sorts of Codecs.
It's precisely because we want to enable the creation of any thinkable codec
or codec-creator, that it's very important that the building blocks that we
provide are as minimalist and ergonomic as they can be.