Security News
Research
Data Theft Repackaged: A Case Study in Malicious Wrapper Packages on npm
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
|made-with-python| |PyPI-version| |Hit-Count| |Downloads|
.. |made-with-python| image:: https://img.shields.io/badge/Made%20with-Python-1f425f.svg :target: https://www.python.org/ .. |PyPI-version| image:: https://badge.fury.io/py/ProxyTunneller.svg :target: https://pypi.python.org/pypi/ProxyTunneller/ .. |Hit-Count| image:: http://hits.dwyl.io/Seven45/ProxyTunneller.svg :target: https://pypi.python.org/pypi/ProxyTunneller/ .. |Downloads| image:: https://pepy.tech/badge/ProxyTunneller :target: https://pepy.tech/project/ProxyTunneller
Library for create/generation proxy tunnels.
.. code-block:: rst
$ pip3 install ProxyTuneller
Create proxy tunnel
.. code-block:: python
import asyncio
from ProxyTunneller import Proxy, Tunnel
async def main():
inner_proxy = Proxy('http', '104.28.10.155', 80)
outer_proxy = Proxy('socks5', '5.9.143.59', 3128)
tunnel = Tunnel(inner_proxy, outer_proxy, verbose_func=print)
await tunnel.build()
print(tunnel.url)
if __name__ == '__main__':
asyncio.run(main())
Generate tunnels from proxy-pool
.. code-block:: python
import asyncio
from ProxyTunneller import Proxy, TunnelGenerator
async def main():
inner_proxies = [
Proxy('http', '104.28.10.145', port)
for port in range(13010, 13030)
]
outer_proxies = [
Proxy('socks5', '138.197.157.44', port)
for port in range(40055, 40200)
]
queue = asyncio.Queue()
generator = TunnelGenerator(queue, inner_proxies, outer_proxies)
# support transparent tunnels
generator.allow_only_invisible_tunnels = False
# close each tunnel in 20 minutes after opening (0 - not close)
generator.tunnels_lifetime = 20*60
generator.run(traffic_writer=print) # or any func for writing traffic
while True:
try:
tunnel = await asyncio.wait_for(queue.get(), 60)
except asyncio.TimeoutError:
break
print(tunnel.url)
if __name__ == '__main__':
asyncio.run(main())
Parallel running of generators for each proxy-provider
.. code-block:: python
import asyncio
from typing import List
import databases
from ProxyTunneller import Proxy, TunnelGenerator, utils
db_url = '<URL_FOR_CONNECT_TO_YOUR_DATABASE>'
dataBase = databases.Database(db_url)
async def get_proxies() -> List[Proxy]:
if not dataBase.is_connected:
await dataBase.connect()
query = f'''SELECT * FROM proxies WHERE proxy_type IN ('http', 'socks4', 'socks5')'''
proxies = await dataBase.fetch_all(query)
proxies = list(map(lambda proxy: Proxy(proxy['proxy_type'],
proxy['host'],
proxy['port'],
proxy['provider_name']),
proxies))
return proxies
async def fill_queue(queue: asyncio.Queue):
inner_proxies = [
Proxy('http', '1.0.0.101', port)
for port in range(13010, 13030)
]
outer_proxies = await get_proxies()
grouped_proxy_lists = utils.group_objects_by_attr(outer_proxies, 'provider')
for proxy_list in grouped_proxy_lists:
generator = TunnelGenerator(queue, inner_proxies, proxy_list)
generator.run()
async def main():
queue = asyncio.Queue(maxsize=200)
await fill_queue(queue)
while True:
try:
tunnel = await asyncio.wait_for(queue.get(), 60)
except asyncio.TimeoutError:
await fill_queue(queue)
continue
print(str(tunnel))
if __name__ == '__main__':
asyncio.run(main())
FAQs
Library for create proxy tunnels
We found that ProxyTunneller demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Research
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Research
Security News
Attackers used a malicious npm package typosquatting a popular ESLint plugin to steal sensitive data, execute commands, and exploit developer systems.
Security News
The Ultralytics' PyPI Package was compromised four times in one weekend through GitHub Actions cache poisoning and failure to rotate previously compromised API tokens.