New Case Study:See how Anthropic automated 95% of dependency reviews with Socket.Learn More
Socket
Sign inDemoInstall
Socket

ai-enterprise-agent

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

ai-enterprise-agent

AI Agent simplifies the implementation and use of generative AI with LangChain.

  • 0.0.9
  • PyPI
  • Socket score

Maintainers
1

Publish new version to NPM

AI Agent

AI Agent simplifies the implementation and use of generative AI with LangChain, was inspired by the project autogen

Installation

Use the package manager pip to install AI Agent.

pip install ai_enterprise_agent

Usage

Simple use

  import asyncio

  from ai_enterprise_agent.agent import Agent
  from ai_enterprise_agent.interface.settings import (CHAIN_TYPE, DATABASE_TYPE, DIALECT_TYPE,
                                  LLM_TYPE, PROCESSING_TYPE, VECTOR_STORE_TYPE)
  agent = Agent({
    'processing_type': PROCESSING_TYPE.single,
    'chains': [CHAIN_TYPE.simple_chain],
    'model': {
      "type": LLM_TYPE.azure,
      "api_key": <api_key>,
      "model": <model>,
      "endpoint": <endpoint>,
      "api_version": <api_version>,
      "temperature": 0.0
    },
    "system": {
      "system_message": ""
    },
  })

  response = asyncio.run(
    agent._call(
      input={
        "question": "Who's Leonardo Da Vinci?.",
        "chat_thread_id": "<chat_thread_id>"
      }
    )
  )
  print(response)

Using with Orchestrator Mode

When using LLM with Orchestrator Mode the Agent finds the best way to answer the question in your base knowledge.


  agent = Agent({
    'processing_type': PROCESSING_TYPE.orchestrator,
    'chains': [CHAIN_TYPE.simple_chain, CHAIN_TYPE.sql_chain],
    'model': {
      "type": LLM_TYPE.azure,
      "api_key": <api_key>,
      "model": <model>,
      "endpoint": <endpoint>,
      "api_version": <api_version>,
      "temperature": 0.0
    },
     "database": {
      "type": DIALECT_TYPE.postgres,
      "host": <host>,
      "port": <port>,
      "username": <username>,
      "password": <password>,
      "database": <database>,
      "includes_tables": ['table-1', 'table-2'],
    },
    "system": {
      "system_message": ""
    },
  })

  response = asyncio.run(
    agent._call(
      input={
        "question": "How many employees there?",
        "chat_thread_id": "<chat_thread_id>"
      }
    )
  )
  print(response)

Contributing

If you've ever wanted to contribute to open source, and a great cause, now is your chance!

See the contributing docs for more information

Contributors ✨


JP. Nobrega

💬 📖 👀 📢

Túlio César Gaio

💬 📖 👀 📢

License

Apache-2.0

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc