Security News
Research
Data Theft Repackaged: A Case Study in Malicious Wrapper Packages on npm
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Antialiased models and pooling layer from Zhang. Making Convnets Shift-Invariant Again. ICML 2019.
Making Convolutional Networks Shift-Invariant Again
Richard Zhang. In ICML, 2019.
Run pip install antialiased-cnns
import antialiased_cnns
model = antialiased_cnns.resnet50(pretrained=True)
If you have a model already and want to antialias and continue training, copy your old weights over:
import torchvision.models as models
old_model = models.resnet50(pretrained=True) # old (aliased) model
antialiased_cnns.copy_params_buffers(old_model, model) # copy the weights over
If you want to modify your own model, use the BlurPool layer. More information about our provided models and how to use BlurPool is below.
C = 10 # example feature channel size
blurpool = antialiased_cnns.BlurPool(C, stride=2) # BlurPool layer; use to downsample a feature map
ex_tens = torch.Tensor(1,C,128,128)
print(blurpool(ex_tens).shape) # 1xCx64x64 tensor
Updates
pip install antialiased-cnns
and load models with the pretrained=True
flag.BlurPool
layerPip install this package
pip install antialiased-cnns
Or clone this repository and install requirements (notably, PyTorch)
https://github.com/adobe/antialiased-cnns.git
cd antialiased-cnns
pip install -r requirements.txt
The following loads a pretrained antialiased model, perhaps as a backbone for your application.
import antialiased_cnns
model = antialiased_cnns.resnet50(pretrained=True, filter_size=4)
We also provide weights for antialiased AlexNet
, VGG16(bn)
, Resnet18,34,50,101
, Densenet121
, and MobileNetv2
(see example_usage.py).
The antialiased_cnns
module contains the BlurPool
class, which does blur+subsampling. Run pip install antialiased-cnns
or copy the antialiased_cnns
subdirectory.
Methodology The methodology is simple -- first evaluate with stride 1, and then use our BlurPool
layer to do antialiased downsampling. Make the following architectural changes.
import antialiased_cnns
# MaxPool --> MaxBlurPool
baseline = nn.MaxPool2d(kernel_size=2, stride=2)
antialiased = [nn.MaxPool2d(kernel_size=2, stride=1),
antialiased_cnns.BlurPool(C, stride=2)]
# Conv --> ConvBlurPool
baseline = [nn.Conv2d(Cin, C, kernel_size=3, stride=2, padding=1),
nn.ReLU(inplace=True)]
antialiased = [nn.Conv2d(Cin, C, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
antialiased_cnns.BlurPool(C, stride=2)]
# AvgPool --> BlurPool
baseline = nn.AvgPool2d(kernel_size=2, stride=2)
antialiased = antialiased_cnns.BlurPool(C, stride=2)
We assume incoming tensor has C
channels. Computing a layer at stride 1 instead of stride 2 adds memory and run-time. As such, we typically skip antialiasing at the highest-resolution (early in the network), to prevent large increases.
Add antialiasing and then continue training If you already trained a model, and then add antialiasing, you can fine-tune from that old model:
antialiased_cnns.copy_params_buffers(old_model, antialiased_model)
If this doesn't work, you can just copy the parameters (and not buffers). Adding antialiasing doesn't add any parameters, so the parameter lists are identical. (It does add buffers, so some heuristic is used to match the buffers, which may throw an error.)
antialiased_cnns.copy_params(old_model, antialiased_model)
We observe improvements in both accuracy (how often the image is classified correctly) and consistency (how often two shifts of the same image are classified the same).
ACCURACY | Baseline | Antialiased | Delta |
---|---|---|---|
alexnet | 56.55 | 56.94 | +0.39 |
vgg11 | 69.02 | 70.51 | +1.49 |
vgg13 | 69.93 | 71.52 | +1.59 |
vgg16 | 71.59 | 72.96 | +1.37 |
vgg19 | 72.38 | 73.54 | +1.16 |
vgg11_bn | 70.38 | 72.63 | +2.25 |
vgg13_bn | 71.55 | 73.61 | +2.06 |
vgg16_bn | 73.36 | 75.13 | +1.77 |
vgg19_bn | 74.24 | 75.68 | +1.44 |
resnet18 | 69.74 | 71.67 | +1.93 |
resnet34 | 73.30 | 74.60 | +1.30 |
resnet50 | 76.16 | 77.41 | +1.25 |
resnet101 | 77.37 | 78.38 | +1.01 |
resnet152 | 78.31 | 79.07 | +0.76 |
resnext50_32x4d | 77.62 | 77.93 | +0.31 |
resnext101_32x8d | 79.31 | 79.33 | +0.02 |
wide_resnet50_2 | 78.47 | 78.70 | +0.23 |
wide_resnet101_2 | 78.85 | 78.99 | +0.14 |
densenet121 | 74.43 | 75.79 | +1.36 |
densenet169 | 75.60 | 76.73 | +1.13 |
densenet201 | 76.90 | 77.31 | +0.41 |
densenet161 | 77.14 | 77.88 | +0.74 |
mobilenet_v2 | 71.88 | 72.72 | +0.84 |
CONSISTENCY | Baseline | Antialiased | Delta |
---|---|---|---|
alexnet | 78.18 | 83.31 | +5.13 |
vgg11 | 86.58 | 90.09 | +3.51 |
vgg13 | 86.92 | 90.31 | +3.39 |
vgg16 | 88.52 | 90.91 | +2.39 |
vgg19 | 89.17 | 91.08 | +1.91 |
vgg11_bn | 87.16 | 90.67 | +3.51 |
vgg13_bn | 88.03 | 91.09 | +3.06 |
vgg16_bn | 89.24 | 91.58 | +2.34 |
vgg19_bn | 89.59 | 91.60 | +2.01 |
resnet18 | 85.11 | 88.36 | +3.25 |
resnet34 | 87.56 | 89.77 | +2.21 |
resnet50 | 89.20 | 91.32 | +2.12 |
resnet101 | 89.81 | 91.97 | +2.16 |
resnet152 | 90.92 | 92.42 | +1.50 |
resnext50_32x4d | 90.17 | 91.48 | +1.31 |
resnext101_32x8d | 91.33 | 92.67 | +1.34 |
wide_resnet50_2 | 90.77 | 92.46 | +1.69 |
wide_resnet101_2 | 90.93 | 92.10 | +1.17 |
densenet121 | 88.81 | 90.35 | +1.54 |
densenet169 | 89.68 | 90.61 | +0.93 |
densenet201 | 90.36 | 91.32 | +0.96 |
densenet161 | 90.82 | 91.66 | +0.84 |
mobilenet_v2 | 86.50 | 87.73 | +1.23 |
To reduce clutter, extended results (different filter sizes) are here. Help improve the results!
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
All material is made available under Creative Commons BY-NC-SA 4.0 license by Adobe Inc. You can use, redistribute, and adapt the material for non-commercial purposes, as long as you give appropriate credit by citing our paper and indicating any changes that you've made.
The repository builds off the PyTorch examples repository and torchvision models repository. These are BSD-style licensed.
If you find this useful for your research, please consider citing this bibtex. Please contact Richard Zhang <rizhang at adobe dot com> with any comments or feedback.
FAQs
Antialiased models and pooling layer from Zhang. Making Convnets Shift-Invariant Again. ICML 2019.
We found that antialiased-cnns demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Research
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Research
Security News
Attackers used a malicious npm package typosquatting a popular ESLint plugin to steal sensitive data, execute commands, and exploit developer systems.
Security News
The Ultralytics' PyPI Package was compromised four times in one weekend through GitHub Actions cache poisoning and failure to rotate previously compromised API tokens.